JEE-MAIN EXAM FEBRUARY, 2024

Date: - 01-02-2024 (SHIFT-2)

PHYSICS

SECTION-A

1. In an ammeter, 5% of the main current passes through the galvanometer. If resistance of the galvanometer is G, the resistance of ammeter will be :

(1)
$$\frac{G}{200}$$
 (2) $\frac{G}{199}$ (3) 199G (4) 200G

2. To measure the temperature coefficient of resistivity α of a semiconductor, an electrical arrangement shown in the figure is prepared. The arm BC is made up of the semiconductor. The experiment is being conducted at 25° C and resistance of the semiconductor arm is $3m\Omega$. Arm BC is cooled at a constant rate of 2° C/s. If the galvanometer G shows no deflection after 10s, then α is :

- **3.** From the statements given below :
 - (A) The angular momentum of an electron in n^{th} orbit is an integral multiple of *h*.
 - (B) Nuclear forces do not obey inverse square law.
 - (C) Nuclear forces are spin dependent.
 - (D) Nuclear forces are central and charge independent.
 - (E) Stability of nucleus is inversely proportional to the value of packing fraction.

Choose the correct answer from the options given below :

- (1) (A), (B), (C), (D) only (2) (A), (C), (D), (E) only
- (3) (A), (B), (C), (E) only (4) (B), (C), (D), (E) only
- **4.** A diatomic gas ($\gamma = 1.4$) does 200 J of work when it is expanded isobarically. The heat given to the gas in the process is :
 - (1) 850J (2) 800J
 - (3) 600J
 - OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B

 Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

 Mob. 7410900901, 7410900906, 7410900907, 7410900908

 www.competishun.com

(4) 700J

6.

7.

8.

9.

10.

11.

12.

5. A disc of radius *R* and mass *M* is rolling horizontally without slipping with speed *v*. It then moves up an inclined smooth surface as shown in figure. The maximum height that the disc can go up the incline is :

13. If the root mean square velocity of hydrogen molecule at a given temperature and pressure is 2 km/s, the root mean square velocity of oxygen at the same condition in km/s is :

(1) 2.0 (2) 0.5 (3) 1.5 (4) 1.0

17.

14. Train A is moving along two parallel rail tracks towards north with speed 72 km/h and train B is moving towards south with speed 108 km/h. Velocity of train B with respect to A and velocity of ground with respect to B are (in ms⁻¹):

```
(1) -30 and 50 (2) -50 and -30
```

```
(3) -50 and 30
```

(4) 50 and -30

15. A galvanometer (G) of 2Ω resistance is connected in the given circuit. The ratio of charge stored in C₁ and C₂ is :

16. In a metre-bridge when a resistance in the left gap is 2Ω and unknown resistance in the right gap, the balance length is found to be 40 cm. On shunting the unknown resistance with 2Ω , the balance length changes by :

(1) 22.5 cm	(2) 20 cm	(3) 62.5 cm	(4) 65 cm
Match List - I wit	th List - II.			
List – I		List – II		
(Number)		(Signif	icant figure)	
(A) 1001		(I) 3		
(B) 010.1		(II) 4		
(C) 100.100		(III) 5		
(D) 0.0010010		(IV) 6		

Choose the correct answer from the options given below :

(1) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)	(2) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)
(3) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)	(4) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)

18. A transformer has an efficiency of 80% and works at 10 V and 4 kW. If the secondary voltage is 240 V, then the current in the secondary coil is :
(1) 1.59 A
(2) 13.33 A
(3) 1.33 A
(4) 15.1 A

19. A light planet is revolving around a massive star in a circular orbit of radius *R* with a period of revolution *T*. If the force of attraction between planet and star is proportional to $R^{-3/2}$ then choose the correct option :

(1)
$$T^2 \propto R^{5/2}$$
 (2) $T^2 \propto R^{7/2}$ (3) $T^2 \propto R^{3/2}$ (4) $T^2 \propto R^3$

20. A body of mass 4 kg experiences two forces $\vec{F}_1 = 5\hat{i} + 8\hat{j} + 7\hat{k}$ and $\vec{F}_2 = 3\hat{i} - 4\hat{j} - 3\hat{k}$. The acceleration acting on the body is :

$(1) - 2\hat{\imath} - \hat{\jmath} - \hat{k}$	(2) $4\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$
(3) $2\hat{\imath} + \hat{\jmath} + \hat{k}$	(4) $2\hat{\imath} + 3\hat{\jmath} + 3\hat{k}$

Co competishun	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020						
The Power of Real Gurus	Мов. 7410900901, 7410900906, 7410900907, 7410900908	3					
	www.competishun.com	5					

SECTION-B

- **21.** A mass *m* is suspended from a spring of negligible mass and the system oscillates with a frequency f_1 . The frequency of oscillations if a mass 9 m is suspended from the same spring is f_2 . The value of $\frac{f_1}{f_2}$ is
- **22.** A particle initially at rest starts moving from reference point. x = 0 along x-axis, with velocity v that varies as $v = 4\sqrt{x}$ m/s. The acceleration of the particle is ms⁻².
- 23. A moving coil galvanometer has 100 turns and each turn has an area of 2.0 cm^2 . The magnetic field produced by the magnet is 0.01 T and the deflection in the coil is 0.05 radian when a current of 10 mA is passed through it. The torsional constant of the suspension wire is $x \times 10^{-5} \text{ N} \text{m/rad}$. The value of x is
- 24. One end of a metal wire is fixed to a ceiling and a load of 2 kg hangs from the other end. A similar wire is attached to the bottom of the load and another load of 1 kg hangs from this lower wire. Then the ratio of longitudinal strain of upper wire to that of the lower wire will be [Area of cross section of wire = 0.005 cm^2 , Y = $2 \times 10^{11} \text{Nm}^{-2}$ and g = 10 ms^{-2}]
- **25.** A particular hydrogen like ion emits the radiation of frequency 3×10^{15} Hz when it makes transition from n = 2 to n = 1. The frequency of radiation emitted in transition from n = 3 to n = 1 is $\frac{x}{9} \times 10^{15}$ Hz, when x =____.
- **26.** In an electrical circuit drawn below the amount of charge stored in the capacitor is μ C.

- 27. A coil of 200 turns and area 0.20 m^2 is rotated at half a revolution per second and is placed in uniform magnetic field of 0.01 T perpendicular to axis of rotation of the coil. The maximum voltage generated in the coil is $\frac{2\pi}{\beta}$ volt. The value of β is
- **28.** In Young's double slit experiment, monochromatic light of wavelength 5000Å is used. The slits are 1.0 mm apart and screen is placed at 1.0 m away from slits. The distance from the centre of the screen where intensity becomes half of the maximum intensity for the first time is $\times 10^{-6}$ m.
- **29.** A uniform rod AB of mass 2 kg and Length 30 cm at rest on a smooth horizontal surface. An impulse of force 0.2Ns is applied to end B. The time taken by the rod to turn through at right angles will be $\frac{\pi}{x}$ s, where x =
- **30.** Suppose a uniformly charged wall provides a uniform electric field of 2×10^4 N/C normally. A charged particle of mass 2 g being suspended through a silk thread of length 20 cm and remain stayed at a distance of 10 cm from the wall. Then the charge on the particle will be $\frac{1}{\sqrt{x}}\mu$ C where x = [use $g = 10 \text{ m/s}^2$]

UFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 Mob. 7410900901, 7410900906, 7410900907, 7410900908

PHYS	ICS			01-02-2024 (EVENING SE						ESSION)			
NTA ANSWERS													
1.	l. (Bonus)			2.	(3)	3.	(3)	4.	(4)	5.	(3)	6.	(1)
7.	(4)	8.	(3)	9.	(4)	10.	(3)	11.	(3)	12.	(1)	13.	(2)
14.	(3)	15.	(4)	16.	(1)	17.	(3)	18.	(2)	19.	(1)	20.	(3)
21.	(3)	22.	(8)	23.	(4)	24.	(3)	25.	(32)	26.	(60)	27.	(5)
28.	(125)	29.	(4)	30.	(3)								

