JEE-MAIN EXAM APRIL, 2025

Date: - 02-04-2025 (SHIFT-1)

CHEMISTRY

SECTION-A

1. Consider the following compound (X)

$$\begin{split} \mathbf{H} - \overset{\mathbf{I}}{\mathbf{C}} &\equiv \mathbf{C} - \overset{\mathbf{II}}{\mathbf{CH}_2} - \overset{\mathbf{III}}{\underset{\mathbf{CH}_3}{\overset{\mathbf{IV}}{\underset{\mathbf{CH}_3}{\overset{\mathbf{IV}}{\underset{\mathbf{CH}_3}{\overset{\mathbf{C$$

The most stable and least stable carbon radicals, respectively, produced by homolytic cleavage of corresponding C - H bond are :

2. Which of the following graph correctly represents the plots of K_H at 1 bar for gases in water versus temperature?

- 3. According to Bohr's model of hydrogen atom, which of the following statement is incorrect?
 - (1) Radius of 6^{th} orbit is three times larger than that of 4^{th} orbit
 - (2) Radius of 3^{rd} orbit is nine times larger than that of 1^{st} orbit
 - (3) Radius of 4^{th} orbit is four times larger than that of 2^{nd} orbit
 - (4) Radius of 8^{th} orbit is four times larger than that of 4^{th} orbit

4. Given below are two statements :

In the light of the above statements, choose the most appropriate answer from the options given below :

- (1) Both Statement I and Statement II are incorrect
- (2) Statement I is incorrect but Statement II is correct
- (3) Both Statement I and Statement II are correct
- (4) Statement I is correct but Statement II is incorrect

5.
$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

Consider the above reaction, what mass of $CaCl_2$ will be formed if 250 mL of 0.76 M HCl reacts with 1000 g of $CaCO_3$?

(Given : Molar mass of Ca, C, O, H and Cl are 40,12,16,1 and 35.5gmol⁻¹, respectively)

(1) 10.545 g (2) 3.908 g (3) 5.272 g (4) 2.636 g

6. Given below are two statements :

Statement (I): In octahedral complexes, when $\Delta_o < P$ high spin complexes are formed. When $\Delta_0 > P$ low spin complexes are formed.

Statement (II) : In tetrahedral complexes because of $\Delta_t < P$, low spin complexes are rarely formed.

In the light of the above statements, choose the most appropriate answer from the options given below :

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are incorrect
- (3) Both Statement I and Statement II are correct
- (4) Statement I is correct but Statement II is incorrect

7. A molecule with the formula $AX_{A}Y$ has all it's elements from p-block. Element A is rarest, monoatomic,

non-radioactive from its group and has the lowest ionization enthalpy value among A, X and Y. Elements X and Y have first and second highest electronegativity values respectively among all the known elements. The shape of the molecule is:

- (1) Pentagonal planar (2) Octahedral
- (3) Trigonal bipyramidal (4) Square pyramidal
- 8. Among SO_2 , NF_3 , NH_3 , XeF_2 , ClF_3 and SF_4 , the hybridization of the molecule with nonzero dipole moment and highest number of lone-pairs of electrons on the central atom is
 - (1) sp^3d (2) dsp^2 (3) sp^3 (4) sp^3d^2

CHEMISTRY

9. Given below are two statements :

Statement (I) : The metallic radius of AI is less than that of Ga .

Statement (II): The ionic radius of Al^{3+} is less than that of Ga^{3+} .

In the light of the above statements, choose the most appropriate answer from the options given below :

(1) Statement I is incorrect but Statement II is correct

- (2) Statement I is correct but Statement II is incorrect
- (3) Both Statement I and Statement II are incorrect
- (4) Both Statement I and Statement II are correct
- **10.** Identify the correct statement among the following :
 - (1) All naturally occurring amino acids are optically active.
 - (2) All naturally occurring amino acids except glycine contain one chiral centre.
 - (3) Amino acid, cysteine can easily undergo dimerisation due to the presence of free SH group.
 - (4) Glutamic acid is the only amino acid that contains a COOH group at the side chain.
- 11. A solution is made by mixing one mole of volatile liquid A with 3 moles of volatile liquid B. The vapour pressure of pure A is 200 mm Hg and that of the solution is 500 mm Hg. The vapour pressure of pure B and the least volatile component of the solution, respectively, are:

(1) 600 mm Hg, A (2) 600 mm Hg, B (3) 1400 mm Hg, A (4) 1400 mm Hg, B

12. On complete combustion 1.0 g of an organic compound (X) gave 1.46 g of CO_2 and 0.567 g of

 H_2O . The empirical formula mass of compound (X) is _____

(Given molar mass in $gmol^{-1}C:12, H:1, O:16$)

- (1) 45 (2) 15 (3) 30 (4) 60
- **13.** An optically active alkyl halide $C_4H_9Br[A]$ reacts with hot KOH dissolved in ethanol and forms alkene [B] as major product which reacts with bromine to give dibromide [C]. The compound [C] is converted into a gas [D] upon reacting with alcoholic $NaNH_2$. During hydration 18 gram of water is added to 1 mole of gas [D] on warming with mercuric sulphate and dilute acid at 333 K to form compound [E]. The IUPAC name of compound [E] is :

(1) Butan-2-one (2) Butan-2-ol (3) But-2-yne

(4) Butan-1-al

14. Designate whether each of the following compounds is aromatic or not aromatic.

- (1) b, e, f, g aromatic and a, c, d, h not aromatic
- (2) e, g aromatic and a, b, c, d, f, h not aromatic
- (3) a, b, c, d aromatic and e, f, g, h not aromatic
- (4) a, c, d, e, h aromatic and b, f, g not aromatic

15. If equal volumes of AB₂ and XY (both are salts) aqueous solutions are mixed, which of the following combination will give a precipitate of AY_2 at 300 K?

(Given
$$K_{sp}$$
 (at 300 K) for $AY_2 = 5.2 \times 10^{-7}$)

(1)
$$2.0 \times 10^{-4} MAB_2, 0.8 \times 10^{-3} MXY$$

(3) $2.0 \times 10^{-2} MAB_2, 2.0 \times 10^{-2} MXY$

(2) $3.6 \times 10^{-3} MAB_2, 5.0 \times 10^{-4} MXY^2$ (4) $1.5 \times 10^{-4} MAB_2, 1.5 \times 10^{-3} MXY$

Thermometer

16.

18.

Two vessels A and B are connected via stopcock. The vessel A is filled with a gas at a certain pressure. The entire assembly is immersed in water and is allowed to come to thermal equilibrium with water. After opening the stopcock the gas from vessel A expands into vessel B and no change in temperature is observed in the thermometer. Which of the following statement is true ?

- (1) $dU \neq 0$
- (2) $dq \neq 0$
- (3) $dw \neq 0$
- (4) The pressure in the vessel B before opening the stopcock is zero
- 17. Choose the correct tests with respective observations.
 - (A) $CuSO_4$ (acidified with acetic acid) $+K_4[Fe(CN)_6] \rightarrow$ Chocolate brown precipitate.
 - (B) $FeCl_3 + K_4 [Fe(CN)_6] \rightarrow$ Prussian blue precipitate.
 - (C) $ZnCl_2 + K_4 [Fe(CN)_6]$, neutralised with $NH_4OH \rightarrow$ White or bluish white precipitate.
 - (D) $MgCl_2 + K_4[Fe(CN)_6] \rightarrow$ Blue precipitate.
 - (E) $BaCl_2 + K_4 [Fe(CN)_6]$, neutralised with $NaOH \rightarrow$ White precipitate.

Choose the correct answer from the options given below :

(1) B, D and E only (2) C, D and E only (3) A, B and C only (4) A, D and E only

The property/properties that show irregularity in first four elements of group-17 is/are :

(A) Covalent radius(B) Electron affinity(C) Ionic radius(D) First ionization energyChoose the correct answer from the options given below :

(1) B only (2) B and D only

(3) A and C only

(4) A, B, C and D

- **19.** The correct order of basic nature in aqueous solution for the bases $NH_3, H_2N NH_2, CH_3CH_2NH_2, (CH_3CH_2)_2NH$ and $(CH_3CH_2)_3N$ is:
 - (1) $NH_3 < H_2N NH_2 < (CH_3CH_2)_3 N < CH_3CH_2NH_2 < (CH_3CH_2)_2 NH$
 - (2) $NH_3 < H_2N NH_2 < CH_3CH_2NH_2 < (CH_3CH_2)_2 NH < (CH_3CH_2)_3 N$
 - (3) $H_2N NH_2 < NH_3 < (CH_3CH_2)_2 N < CH_3CH_2NH_2 < (CH_3CH_2)_2 NH$
 - (4) $NH_2 NH_2 < NH_3 < CH_3CH_2NH_2 < (CH_3CH_2)_2 N < (CH_3CH_2)_2 NH$

20. Consider the following molecules :

The correct order of rate of hydrolysis is :

(1) r > q > p > s (2) p > r > q > s (3) p > q > r > s (4) q > p > r > s

SECTION-B

- 21. A transition metal (M) among Mn, Cr, Co and Fe has the highest standard electrode potential (M^{3+}/M^{2+}) . It forms a metal complex of the type $[M(CN)_6]^{4-}$. The number of electrons present in the e_g orbital of the complex is _____
- 22. Consider the following equilibrium,

 $CO(g) + 2H_2(g) \Longrightarrow CH_3OH(g)$

0.1 mol of CO along with a catalyst is present in a $2dm^3$ flask maintained at 500 K. Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of CH_3OH is formed. The K_p^{θ} is

_____ $\times 10^{-3}$ (nearest integer).

Given : $R = 0.08 dm^3$ bar $K^{-1} mol^{-1}$

Assume only methanol is formed as the product and the system follows ideal gas behaviour.

23. 0.1 mol of the following given antiviral compound (P) will weigh $___ \times 10^{-1}g$ (nearest integer).

(Given : molar mass in g mol⁻¹ H: 1, C: 12, N: 14, O: 16, F: 19, I: 127)

24. For the reaction $A \rightarrow$ products.

The concentration of A at 10 minutes is _____ $\times 10^{-3} molL^{-1}$ (nearest integer). The reaction was started with $2.5molL^{-1}$ of A.

25. Consider the following electrochemical cell at standard condition.

 $Au(s) |QH_2, Q| NH_4 X(0.01M) || Ag^+(1M)^* Ag(s) E_{cell} = +0.4V$

The couple QH_2/Q represents quinhydrone electrode, the half cell reaction is given below

The pK_b value of the ammonium halide salt $\left(NH_4X\right)$ used here is ______. (nearest integer)

NTA ANSWERS													
1.	(1)	2.	(1)	3.	(1)	4.	(4)	5.	(1)	6.	(3)	7.	(4)
8.	(1)	9.	(1)	10.	(3)	11.	(1)	12.	(3)	13.	(1)	14.	(4)
15.	(3)	16.	(4)	17.	(3)	18.	(1)	19.	(4)	20.	(3)	21.	1
22.	74	23.	372	24.	2435	25.	6						

Co competishun	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020					
The Power of Real Gurus	Мов. 7410900901, 7410900906, 7410900907, 7410900908	6				
	www.competishun.com	0				