JEE-MAIN EXAM APRIL, 2025

Date: - 02-04-2025 (SHIFT-2)

CHEMISTRY

SECTION-A

The type of hybridization and the magnetic property of $[MnCl_6]^{3-}$ are, 1. (1) d^2sp^3 , paramagnetic with two unpaired electrons. (2) d^2s^3 , paramagnetic with four unpaired electrons. (3) sp^3d^2 , paramagnetic with four unpaired electrons. (4) sp^3d^2 , paramagnetic with two unpaired electrons. Which among the following molecules is (a) involved in sp^3d hybridization, (b) has different bond 2. lengths and (c) has lone pair of electrons on the central atom ? (2) XeF_{4} (3) XeF_2 (4) PF_{ε} (1) SF_{4} A tetrapeptide, "x" on complete hydrolysis produced glycine (Gly), alanine (Ala), valine (Val), leucine 3. (Leu) in equimolar proportion each. The number of tetrapeptides (sequences) possible involving each of these amino acids is : (1) 32(2) 8(3) 24(4) 16Electronic configuration of four elements A,B,C and D are given below : 4. (B) $1s^2 2s^2 2p^4$ (C) $1s^2 2s^2 2p^5$ (A) $1s^2 2s^2 2p^3$ (D) $1s^2 2s^2 2p^2$ Which of the following is the correct order of increasing electronegativity (Pauling's scale)? (1) A < C < B < D(2) A < B < C < D (3) A < D < B < C(4) D < A < B < C5. In Dumas' method for estimation of nitrogen, 0.5 gram of an organic compound gave 60 mL of nitrogen collected at 300 K temperature and 715 mm Hg pressure. The percentage composition of nitrogen in the compound (Aqueous tension at 300 K =15 mm Hg) is _____% (1) 20.87(2) 18.67 (3) 12.57 (4) 1.257 'x' g of NaCl is added to water in a beaker with a lid. The temperature of the system is raised from $1\degree C$ 6. to $25^{\circ}C$. Which out of the following plots, is best suited for the change in the molarity (M) of the solution with respect to temperature? [Consider the solubility of NaCl remains unchanged over the temperature range] (2)(3)

7. Arrange the following in order of magnitude of work done by the system/on the system at constant temperature. (a) $|W_{\text{reversible}}|$ for expansion in infinite stages. (b) $|W_{\text{irreversible}}|$ for expansion in single stage. (c) $|W_{\text{reversible}}|$ for compression in infinite stages. (d) $W_{\text{irreversible}}$ for compression in single stage. Choose the correct answer from the options given below : (2) a > b > c > d (3) a > c > b > d (4) d > c = a > b(1) c = a > d > bFormation of $Na_4[Fe(CN)_5NOS]$, a purple coloured complex formed by addition of sodium 8. nitroprusside in sodium carbonate extract of salt indicates the presence of : (1) Sulphite ion (2) Sodium ion (3) Sulphate ion (4) Sulphide ion 9. Consider the following chemical equilibrium of the gas phase reaction at a constant temperature : $A(g) \rightarrow B(g) + C(g)$ If p being the total pressure, K_p is the pressure equilibrium constant and α is the degree of dissociation, then which of the following is true at equilibrium? (1) When p increases α increases (2) If p value is extremely high compared to $K_{p}, \alpha \approx 1$ (3) When p increases \$\alpha\$ decreases (4) If K_p value is extremely high compared to p, α becomes much less than unity The nature of oxide (TeO_2) and hydride (TeH_2) formed by Te, respectively are : 10. (1) Oxidising and basic (2) Reducing and basic (3) Reducing and acidic (4) Oxidising and acidic 11. Given below are two statements : Statement (I): Neopentane forms only one monosubstituted derivative. Statement (II) : Melting point of neopentane is higher than n-pentane. In the light of the above statements, choose the most appropriate answer from the options given below : (1) Statement I is incorrect but Statement II is correct (2) Statement I is correct but Statement II is incorrect (3) Both Statement I and Statement II are incorrect (4) Both Statement I and Statement II are correct In 3,3-dimethylhex-1-en-4-yne, there are p^3 , p^3 , p^2 and p^2 sp hybridised carbon 12. atoms respectively. (1) 2, 4, 2 (2) 4, 2, 2 (3) 2, 2, 4(4) 3, 3, 2 OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 competishun Мов. 7410900901, 7410900906, 7410900907, 7410900908 The Power of Real Gurus 2 www.competishun.com

(4) $t_{2g}^{6}e_{g}^{0}$

13.	Match List - I with List - II.							
	List - I	List - II						
	(Purification technique)	(Mixture of organic compounds)						
	(A) Distillation (simple)	(I) Diesel + Petrol						
	(B) Fractional distillation	(II) Aniline + Water						
	(C) Distillation under reduced pressure	(III) Chloroform + Aniline						
	(D) Steam distillation	(IV) Glycerol + Spent-lye						
	Choose the correct answer from the options given below :							
	(1) (A)-(III),(B)-(IV),(C)-(II),(D)-(I)	(2) (A)-(II), (B)-(IV), (C)-(I), (D)-(III)						
	(3) (A)-(II),(B)-(II),(C)-(IV),(D)-(I)	(4) (A) -(III),(B)-(I),(C)-(IV),(D)-(II)						
	The description of the	$\int G_{2}(u) = \int G_{2}(u) \int_{0}^{3+} \left[G_{2}(u) \right]^{3-} \int M_{2}(u, 0) \int G_{2}(u, 0) \int$						

14. The d-orbital electronic configuration of the complex among $[Co(en)_3]^{3+}$, $[CoF_6]^{3-}$, $[Mn(H_2O)_6]^{2+}$

and $\left[Zn(H_2O)_6\right]^{2+}$ that has the highest CFSE is : (1) $t_{2g}^{\ 4}e_g^{\ 2}$ (2) $t_{2g}^{\ 6}e_g^{4}$ (3) $t_{2g}^{\ 3}e_g^{\ 2}$

15. Which of the following graphs correctly represents the variation of thermodynamic properties of Haber's process?

When a concentrated solution of sulphanilic acid and 1-naphthylamine is treated with nitrous acid (273 K) and acidified with acetic acid, the mass (g) of 0.1 mole of product formed is :

(Given molar mass in $gmol^{-1}H: 1, C: 12, N: 14, O: 16, S: 32$)

 (1) 343
 (2) 330
 (3) 33
 (4) 66

17. Which of the following statements are true?

CHEMISTRY

(A) The subsidiary quantum number l describes the shape of the orbital occupied by the electron.

(B)
$$\xrightarrow{\gamma}_{\chi}$$
 is the boundary surface diagram of the $2p_{\chi}$ orbital

- (C) The + and signs in the wave function of the $2p_x$ orbital refer to charge.
- (D) The wave function of $2p_x$ orbital is zero everywhere in the xy plane.
- Choose the correct answer from the options given below :
- (1) (A), (B) and (C) only (2) (A) and (B) only (3) (B) and (D) only (4) (C) and (D) only

20.

18. Reactant A converts to product D through the given mechanism (with the net evolution of heat) :

 $A \rightarrow B$ slow; $\Delta H = +$ ve $\land C$ fact: $\land H$ в

$$\Delta \rightarrow C$$
 last, $\Delta \Pi = -Ve$

$$C \rightarrow D$$
 fast; $\Delta H = -ve$

Which of the following represents the above reaction mechanism?

19. Consider the following reactions. From these reactions which reaction will give carboxylic acid as a major product?

Choose the correct answer from the options given below :

(1) A and D only (2) B and E only (3) A, B and E only (4) B, C and E only Match List - I with List - II.

	List-I	List-II			
	(Reaction)	(Name of			
		reaction)			
(A)	2 X+2Na $\xrightarrow{\text{Dry}}$	(I)	Lucas		
	+2Na		reaction		
(B)	$\operatorname{ArN}_{2}^{+}\operatorname{X}^{-} \xrightarrow{\operatorname{Cu}} \operatorname{ArCl} + \operatorname{N}_{2} \uparrow + \operatorname{CuX}$	(II)	Finkelstein		
			reaction		
(C)	$C_2H_5Br + NaI \xrightarrow{Dry} C_2H_5I + NaBr$	(III)	Fittig		
			reaction		
(D)	$CH_3C(OH)(CH_3)CH_3 \xrightarrow{HCl} \rightarrow$	(IV)	Gatterman		
	CH ₃ C(Cl)(CH ₃)CH ₃		reaction		

Choose the correct answer from the options given below :

- (1) (A) -(IV),(B)-(III),(C)-(I),(D)-(II)
- (3) (A)-(III), (B)-(II),(C)-(IV),(D)-(I)

(2) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)

(4) (A)-(IV),(B)-(I),(C)-(II),(D)-(III)

SECTION-B

Consider the above sequence of reactions. 151 g of 2-bromopentane is made to react. Yield of major product P is 80% whereas Q is 100%.

Mass of product Q obtained is ____ g.

(Given molar mass in $gmol^{-1}H: 1, C: 12, O: 16, Br: 80$)

- 22. 0.2%(w/v) solution of NaOH is measured to have resistivity $870.0m\Omega m$. The molar conductivity of the solution will be _____ × $10^2 mS dm^2 mol^{-1}$. (Nearest integer)
- 23. When 1 g each of compounds AB and AB_2 are dissolved in 15 g of water separately, they increased the boiling point of water by 2.7 K and 1.5 K respectively. The atomic mass of A (in amu) is _____ ×10⁻¹ (Nearest integer)

(Given : Molal boiling point elevation constant is $0.5 Kkgmol^{-1}$)

24. For the reaction $A \rightarrow B$ the following graph was obtained. The time required (in seconds) for the concentration of A to reduce to $2.5gL^{-1}$ (if the initial concentration of A was $50gL^{-1}$) is . (Nearest integer)

Given : $\log 2 = 0.3010$

25. The spin-only magnetic moment value of M^{n+} ion formed among Ni, Zn, Mn and Cu that has the least enthalpy of atomisation is ______. (in nearest integer) Here n is equal to the number of diamagnetic complexes among $K_2[NiCl_4], [Zn(H_2O)_6]Cl_2, K_3[Mn(CN)_6]$ and $[Cu(PPh_3)_3\Gamma]$

NTA ANSWERS													
1.	(3)	2.	(1)	3.	(3)	4.	(4)	5.	(3)	6.	(1)	7.	(4)
8.	(4)	9.	(3)	10.	(4)	11.	(4)	12.	(2)	13.	(4)	14.	(4)
15.	(1)	16.	(3)	17.	(2)	18.	(4)	19.	(2)	20.	(2)	21.	184
22.	23	23.	25	24.	43	25.	0						

