JEE-MAIN EXAM APRIL, 2025

Date: - 02-04-2025 (SHIFT-1)

MATHEMATICS

SECTION-A

- Let A be the set of all functions $f:Z\to Z$ and R be a relation on A such that 1 $R = \{(f,g): f(0) = g(1) \text{ and } f(1) = g(0)\}.$ Then R is:
 - (1) Transitive but neither reflexive nor symmetric
 - (2) Symmetric and transitive but not reflective
 - (3) Symmetric but neither reflective nor transitive
 - (4) Reflexive but neither symmetric nor transitive
- Let z be a complex number such that |z|=1. If $\frac{2+k^2z}{k+\overline{z}}=kz, k\in \mathbb{R}$, then the maximum distance of 2.
 - $k+ik^2$ from the circle |z-(1+2i)|=1 is :
 - (1) $\sqrt{5} + 1$
- (2) $\sqrt{3} + 1$
- (4)2
- Let $f: R \to R$ be a twice differentiable function such that 3.

 $(\sin x \cos y)(f(2x+2y)-f(2x-2y)) = (\cos x \sin y)(f(2x+2y)+f(2x-2y))$, for all $x, y \in R$.

- If $f'(0) = \frac{1}{2}$, then the value of $24f''\left(\frac{5\pi}{3}\right)$ is:

- Let $P_n=\alpha^n+\beta^n, n\in \mathbb{N}$. If $P_{10}=123, P_9=76, P_8=47$ and $P_1=1$, then the quadratic equation 4. having roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is:

- (1) $x^2 x + 1 = 0$ (2) $x^2 x 1 = 0$ (3) $x^2 + x + 1 = 0$ (4) $x^2 + x 1 = 0$
- Let a_1, a_2, a_3, \ldots be in an A.P. such that $\sum_{k=1}^{12} a_{2k-1} = -\frac{72}{5} a_1, a_1 \neq 0$. If $\sum_{k=1}^n a_k = 0$, then n is : 5.
 - (1) 18
- (2) 10

- Let the focal chord PQ of the parabola $y^2 = 4x$ make an angle of 60° with the positive x axis, where 6. P lies in the first quadrant. If the circle, whose one diameter is PS, S being the focus of the parabola, touches the y-axis at the point $(0,\alpha)$, then $5\alpha^2$ is equal to :
 - (1)20
- (2)30
- (4) 15

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

- Let the vertices Q and R of the triangle PQR lie on the line $\frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3}$, QR = 5 and the 7. coordinates of the point P be (0,2,3). If the area of the triangle PQR is $\frac{m}{}$ then:

 - (1) $2m 5\sqrt{21}n = 0$ (2) $5m 2\sqrt{21}n = 0$ (3) $5m 21\sqrt{2}n = 0$ (4) $m 5\sqrt{21}n = 0$
- The term independent of x in the expansion of $\left(\frac{(x+1)}{\left(x^{2/3}+1-x^{1/3}\right)}-\frac{(x-1)}{\left(x-x^{1/2}\right)}\right)^{10}$, x>1, is : 8.
 - (1) 120
- (2)240
- (3)210
- If \vec{a} is a nonzero vector such that its projections on the vectors $2\hat{i}-\hat{j}+2\hat{k},\hat{i}+2\hat{j}-2\hat{k}$ and \hat{k} are 9. equal, then a unit vector along \vec{a} is :
 - (1) $\frac{1}{\sqrt{155}}(-7\hat{i}+9\hat{j}+5\hat{k})$

(2) $\frac{1}{\sqrt{155}}$ $(7\hat{i} + 9\hat{j} + 5\hat{k})$

(3) $\frac{1}{\sqrt{155}} (7\hat{i} + 9\hat{j} - 5\hat{k})$

- (4) $\frac{1}{\sqrt{155}}(-7\hat{i}+9\hat{j}-5\hat{k})$
- If $\theta \in [-2\pi, 2\pi]$, then the number of solutions of $2\sqrt{2}\cos^2\theta + (2-\sqrt{6})\cos\theta \sqrt{3} = 0$, is equal to : 10.

- If the function $f(x) = 2x^3 9ax^2 + 12a^2x + 1$, where a > 0, attains its local maximum and local 11. minimum values at p and q, respectively, such that $p^2 = q$, then f(3) is equal to:
 - (1) 10

- If S and S' are the foci of the ellipse $\frac{x^2}{18} + \frac{y^2}{9} = 1$ and P be a point on the ellipse, then 12. $\min\left(\mathit{SP}\cdot\mathit{S'P}\right) + \max\left(\mathit{SP}\cdot\mathit{S'P}\right)$ is equal to :
 - (1) $3(6+\sqrt{2})$
- (2)27
- (3) $3(1+\sqrt{2})$
- (4)9
- 13. The number of sequences of ten terms, whose terms are either 0 or 1 or 2, that contain exactly five 1 s and exactly three 2 s, is equal to:

- Let $A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix}$, $\alpha > 0$, such that $\det(A) = 0$ and $\alpha + \beta = 1$. If I denotes 2×2 identity matrix, then 14.
 - the matrix $(I+A)^8$ is :

- $(1) \begin{bmatrix} 766 & -255 \\ 1530 & -509 \end{bmatrix}$ $(2) \begin{bmatrix} 257 & -64 \\ 514 & -127 \end{bmatrix}$ $(3) \begin{bmatrix} 4 & -1 \\ 6 & -1 \end{bmatrix}$ $(4) \begin{bmatrix} 1025 & -511 \\ 2024 & -1024 \end{bmatrix}$
- The largest $n \in N$ such that 3^n divides 50! is: 15.
 - (1) 23
- (2)21
- (3)22
- (4) 20

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

- 16. Let ABCD be a tetrahedron such that the edges AB, AC and AD are mutually perpendicular. Let the areas of the triangles ABC, ACD and ADB be 5,6 and 7 square units respectively. Then the area (in square units) of the ΔBCD is equal to :
 - (1) $\sqrt{110}$
- (2) $\sqrt{340}$
- (3) 12
- (4) $7\sqrt{3}$
- 17. For $\alpha, \beta, \gamma \in R$, if $\lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma 1)e^{x^2}}{\sin 2x \beta x} = 3$, then $\beta + \gamma \alpha$ is equal to :
 - (1) 6

- (2) -1
- (3) 4
- (4) 7
- **18.** Let $a \in R$ and A be a matrix of order 3×3 such that $\det(A) = -4$ and $A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix}$, where

I is the identity matrix of order 3×3 . If det $((a+1)\operatorname{adj}((a-1)A))$ is $2^m3^n, m, n\in\{0,1,2,\ldots,20\}$, then m+n is equal to :

- (1) 14
- (2) 16
- (3) 17
- (4) 15
- 19. Let one focus of the hyperbola $H: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ be at $(\sqrt{10}, 0)$ and the corresponding directrix be

 $x = \frac{9}{\sqrt{10}}$. If e and l respectively are the eccentricity and the length of the latus rectum of H, then

- $9(e^2+l)$ is equal to :
- (1) 16
- (2)12
- (3) 15
- (4) 14

20. If the system of linear equations

$$3x + y + \beta z = 3$$

$$2x + \alpha y - z = -3$$

$$x + 2y + z = 4$$

has infinitely many solutions, then the value of $22\beta - 9\alpha$ is :

- (1) 31
- (2)43
- (3)49
- (4) 37

SECTION-B

- 21. If the area of the region $\{(x,y): \left|4-x^2\right| \le y \le x^2, y \le 4, x \ge 0\}$ is $\left(\frac{80\sqrt{2}}{\alpha}-\beta\right), \alpha, \beta \in \mathbb{N}$, then $\alpha+\beta$ is equal to
- The absolute difference between the squares of the radii of the two circles passing through the point (-9,4) and touching the lines x+y=3 and x-y=3, is equal to _____

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

Mob. 7410900901, 7410900906, 7410900907, 7410900908

- 23. Let $f: R \to R$ be a thrice differentiable odd function satisfying $f'(x) \ge 0, f''(x) = f(x), f(0) = 0, f'(0) = 3$. Then $9f(\log_e 3)$ is equal to _____.
- **24.** Let [.] denote the greatest integer function. If $\int_0^{e^3} \left[\frac{1}{e^{x-1}} \right] dx = \alpha \log_e 2$, then α^3 is equal to _____.
- 25. Three distinct numbers are selected randomly from the set $\{1, 2, 3, ..., 40\}$. If the probability, that the selected numbers are in an increasing G.P., is $\frac{m}{n}$, $\gcd(m,n)=1$, then m+n is equal to _____.

NTA ANSWERS													
1.	(3)	2.	(1)	3.	(4)	4.	(4)	5.	(4)	6.	(4)	7.	(1)
8.	(3)	9.	(2)	10.	(1)	11.	(3)	12.	(2)	13.	(2)	14.	(1)
15.	(3)	16.	(1)	17.	(4)	18.	(2)	19.	(1)	20.	(1)	21.	22
22.	768	23.	36	24.	8	25.	4949						