JEE-MAIN EXAM APRIL, 2025

Date: - 02-04-2025 (SHIFT-2)

MATHEMATICS

SECTION-A

1.	If the image of the point P(1,0,3) in the line joining the points A(4,7,1) and B(3,5,3) is $Q(\alpha, \beta, \gamma)$, then									
	$\alpha + \beta + \gamma$ is equal to :									
	(1) 13	(2) $\frac{47}{3}$	(3) 18	(4) $\frac{46}{3}$						
2.	If the domain of the function $f(x) = \frac{1}{\sqrt{10+3x-x^2}} + \frac{1}{\sqrt{x+ x }}$ is (a,b) , then $(1+a)^2 + b^2$ is equal									
	to:									
	(1) 30	(2) 26	(3) 29	(4) 25						
3.	If the mean and the variance of 6,4, a, 8, b, 12,10,13 are 9 and 9.25 respectively, then a + b + ab is									
	equal to :									
	(1) 100	(2) 105	(3) 103	(4) 10 <mark>6</mark>						
4.	The line L_1 is parallel to vector $\vec{a} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ and passes through the point (7,6,2) and the line									
	L_2 is parallel to vector $\vec{b} = 2\hat{i} + \hat{j} + 3\hat{k}$ and passes through the point (5,3,4). The shortest distance									
	between the lines L_1 and L_2 is :									
	(1) $\frac{21}{\sqrt{38}}$	(2) $\frac{23}{\sqrt{57}}$	(3) $\frac{21}{\sqrt{57}}$	(4) $\frac{23}{\sqrt{38}}$						
5.	If $\lim_{x \to 0} \frac{\cos(2x) + a\cos(4x) - b}{x^4}$ is finite, then $(a+b)$ is equal to :									
	(1) –1	(2) 0	(3) $\frac{3}{4}$	(4) $\frac{1}{2}$						
6.	The number of ways	, in which the letters A, B	, C, D, E can be placed ir	n the 8 boxes of the figure below						
	so that no row remai	ns empty and at most one	e letter can be placed in a	box, is :						
	(1) 5880	(2) 840	(3) 960	(4) 5760						

	divides the chord PQ in the ratio $m: n, \gcd(m, n) = 1$, then $m^2 + n^2$ is equal to :								
	(1) 37	(2) 26	(3) 10	(4) 17					
8.	Let (a, b) be the point	of intersection of the cu	rve $x^2 = 2y$ and the sti	raight line $y-2x-6=0$ in the					
	Let (u, v) be the point of intersection of the outver $x = 2y$ and the straight line $y = 2x = 0 = 0$ in the								
	second quadrant. Then the integral $I = \int_{a}^{b} \frac{9x}{1+5^{x}} dx$ is equal to :								
	(1) 24	(2) 27	(3) 18	(4) 21					
9.	Let $A = \{1, 2, 3, \dots, 10\}$	$0\}$ and R be a relation	on on A such that R =	= { $(a,b): a = 2b+1$ }. Let $(a_1, b) = (a_2, b) = (a_2, b) = (a_2, b)$.					
	a_2), (a_2,a_3) , (a_3,a_4) ,, (a_k,a_{k+1}) be a sequence of k elements of R such that the second entry								
	of an ordered pair is equal to the first entry of the next ordered pair. Then the largest integer k , for								
	which such a sequence	e exists, is equal to :							
	(1) 6	(2) 7	(3) 5	(4) 8					
10.	Given three identical ba	ags each containing 10 b	alls, whose colours are a	as follows :					
		Red	Blue	Green					
	Bag I	3	2	5					
	Bag II	4	3	3					
	Bag III	5	1	4					
	A person chooses a ba	ig at random and takes (out a ball. If the ball is R	ed, the probability that it is from					
	bag I is p and if the ball	is Green, the probability	that it is from bag III is q,	then the value of $\left(\frac{1}{p} + \frac{1}{q}\right)$ is :					
	(1)7	(2) 6	(3) 8	(4) 9					
11.	Let $f:[1,\infty) \rightarrow [2,\infty)$	be a differentiable fund	tion. If $10 \int_{1}^{x} f(t) dt = 5x$	$xf(x) - x^5 - 9$ for all $x \ge 1$, then					
	the value of $f(3)$ is :								
	(1) 26	(2) 32	(3) 18	(4) 22					
12.	If the length of the mine	or axis of an ellipse is e	qual to one fourth of the	distance between the foci, then					
	the eccentricity of the e	llipse is :							
		4	$\sqrt{5}$	$\sqrt{3}$					
	(1) $\overline{\sqrt{19}}$	(2) $\frac{1}{\sqrt{17}}$	$(3) - \frac{7}{7}$	(4) ${16}$					
13.	If $\sum_{r=0}^{10} \left(\frac{10^{r+1} - 1}{10^r} \right) \cdot {}^{11} C_{r+1} = \frac{\alpha^{11} - 11^{11}}{10^{10}}$, then α is equal to :								
	(1) 24	(2) 20	(3) 15	(4) 11					
14.	Let A be a 3×3 real m	natrix such that $A^2(A-$	2I) - 4(A - I) = O, wh	ere I and O are the identity and					
	null matrices, respectively. If $A^5 = \alpha A^2 + \beta A + \gamma I$, where α, β , and γ are real constants, then								
	$lpha+eta+\gamma$ is equal to :								
	(1) 4	(2) 12	(3) 76	(4) 20					
C ^	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 E Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020								
	The Power of Real Gurus	Мов. 7410900901, 7410900906, 7410900907, 7410900908							

www.competishun.com

The number of terms of an A.P. is even; the sum of all the odd terms is 24, the sum of all the even 15. terms is 30 and the last term exceeds the first by $\frac{21}{2}$. Then the number of terms which are integers in the A.P. is : (1) 10(2) 8(3) 6(4) 4If $\theta \in \left[-\frac{7\pi}{6}, \frac{4\pi}{3}\right]$, then the number of solutions of $\sqrt{3} \operatorname{cosec}^2 \theta - 2(\sqrt{3} - 1) \operatorname{cosec} \theta - 4 = 0$, is equal 16. to: (1)7(4) 8 (2) 10(3) 617. If the system of equations $2x + \lambda v + 3z = 5$ 3x + 2y - z = 7 $4x + 5v + \mu z = 9$ has infinitely many solutions, then $\left(\lambda^2 + \mu^2\right)$ is equal to : (1) 26 (2) 18 (3) 22 (4) 30 $4\int_{0}^{1} \left(\frac{1}{\sqrt{3+r^{2}}+\sqrt{1+r^{2}}}\right) dx - 3\log_{e}(\sqrt{3})$ is equal to : 18. (1) $2 - \sqrt{2} + \log(1 + \sqrt{2})$ (2) $2 - \sqrt{2} - \log(1 + \sqrt{2})$ (3) $2 + \sqrt{2} - \log_{a}(1 + \sqrt{2})$ (4) $2 + \sqrt{2} + \log(1 + \sqrt{2})$ Let the area of the triangle formed by a straight line L: x+by+c=0 with co-ordinate axes be 48 19. square units. If the perpendicular drawn from the origin to the line L makes an angle of 45° with the positive x-axis, then the value of $b^2 + c^2$ is : (1) 90 (2) 83 (3) 97 (4) 93 Let $\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k}$, $\vec{b} = 3\hat{i} + 2\hat{j} + 5\hat{k}$ and a vector \vec{c} be such that $(\vec{a} - \vec{c}) \times \vec{b} = -18\hat{i} - 3\hat{j} + 12\hat{k}$ 20. and $\vec{a} \cdot \vec{c} = 3$. If $\vec{b} \times \vec{c} = \vec{d}$, then $|\vec{a} \cdot \vec{d}|$ is equal to: (1) 18 (2)9(3) 12 (4) 15 **SECTION-B** Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} + 2y \sec^2 x = 2\sec^2 x + 3\tan x \cdot \sec^2 x$ 21. such that $y(0) = \frac{5}{4}$. Then $12\left(y\left(\frac{\pi}{4}\right) - e^{-2}\right)$ is equal to _____. OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B

- **22.** Let A(4,-2), B(1,1) and C(9,-3) be the vertices of a triangle ABC. Then the maximum area of the parallelogram AFDE, formed with vertices D, E and F on the sides BC, CA and AB of the triangle ABC respectively, is _____
- 23. If $y = \cos\left(\frac{\pi}{3} + \cos^{-1}\frac{x}{2}\right)$, then $(x y)^2 + 3y^2$ is equal to
- 24. If the set of all $a \in R \{1\}$, for which the roots of the equation $(1-a)x^2 + 2(a-3)x + 9 = 0$ are positive is $(-\infty, -\alpha] \cup [\beta, \gamma)$, then $2\alpha + \beta + \gamma$ is equal to_____
- 25. If the sum of the first 10 terms of the series $\frac{4 \cdot 1}{1 + 4 \cdot 1^4} + \frac{4 \cdot 2}{1 + 4 \cdot 2^4} + \frac{4 \cdot 3}{1 + 4 \cdot 3^4} + \dots$ is $\frac{m}{n}$, where

gcd(m,n) = 1, then m+n is equal to _____

NTA ANSWERS													
1.	(4)	2.	(2)	3.	(3)	4.	(4)	5.	(4)	6.	(4)	7.	(4)
8.	(1)	9.	(3)	10.	(1)	11.	(2)	12.	(2)	13.	(2)	14.	(2)
15.	(4)	16.	(3)	17.	(1)	18.	(2)	19.	(3)	20.	(4)	21.	21
22.	3	23.	3	24.	7	25.	441						

