JEE-MAIN EXAM APRIL, 2025

Date: - 03-04-2025 (SHIFT-2)

MATHEMATICS

SECTION-A

- **1.** The shortest distance between the curves $y^2 = 8x$ and $x^2 + y^2 + 12y + 35 = 0$ is:
 - (1) $\sqrt{2}$ (2) $3\sqrt{2}-1$ (3) $2\sqrt{2}-1$ (4) $2\sqrt{3}-1$
- **2.** Let f be a function such that $f(x) + 3f\left(\frac{24}{x}\right) = 4x, x \neq 0$. Then f(3) + f(8) is equal to.
 - (1) 13 (2) 12 (3) 10 (4) 11

3. Let *C* be the circle of minimum area enclosing the ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with eccentricity $\frac{1}{2}$ and foci $(\pm 2, 0)$. Let PQR be a variable triangle, whose vertex *P* is on the circle *C* and the side QR of length 2a is parallel to the major axis of *E* and contains the point of intersection of *E* with the negative *y*-axis. Then the maximum area of the triangle PQR is :

(1) $6(3+\sqrt{2})$ (2) $6(2+\sqrt{3})$ (3) $8(3+\sqrt{2})$ (4) $8(2+\sqrt{3})$

4. If the probability that the random variable X takes the value x is given by

$$P(X = x) = k(x+1)3^{-x}, x = 0, 1, 2, 3...,$$
 where k is a constant, then $P(X \ge 3)$ is equal to

(1)
$$\frac{4}{9}$$
 (2) $\frac{1}{9}$ (3) $\frac{7}{27}$ (4) $\frac{8}{27}$

5. The integral $\int_0^{\pi} \frac{8xdx}{4\cos^2 x + \sin^2 x}$ is equal to

(1)
$$\pi^2$$
 (2) $2\pi^2$ (3) $\frac{3\pi^2}{2}$ (4) $4\pi^2$

6. Let y = y(x) be the solution of the differential equation

$$\frac{dy}{dx} + 3(\tan^2 x)y + 3y = \sec^2 x, \ y(0) = \frac{1}{3} + e^3. \text{ Then } y\left(\frac{\pi}{4}\right) \text{ is equal to}$$
(1) $\frac{2}{3}$ (2) $\frac{4}{3} + e^3$ (3) $\frac{4}{3}$ (4) $\frac{2}{3} + e^3$

7. If the domain of the function $f(x) = \log_7 \left(1 - \log_4 \left(x^2 - 9x + 18\right)\right)$ is $(\alpha, \beta) \cup (\gamma, \delta)$, then $\alpha + \beta + \gamma + \delta$ is equal to (1) 17 (2) 16 (3) 15 (4) 18

8.	Line L_1 of slope 2 ar	nd line L_2 of slope $\frac{1}{2}$	intersect at the origin	O . In the first quadrant, P_1 ,				
	P_2,\ldots,P_{12} are 12 points on line L_1 and Q_1,Q_2,\ldots,Q_9 are 9 points on line L_2 . Then the total number							
	of triangles, that can be formed having vertices at three of the 22 points $O, P_1, P_2, \dots, P_{12}$,							
	<i>Q., Q.,, Q., is</i> :	, i i i i i i i i i i i i i i i i i i i						
	(1) 1134	(2) 1188	(3) 1080	(4) 1026				
9.	Consider the lines $x(3)$	$(\lambda + 1) + y(7\lambda + 2) = 17\lambda$	$l+5, \lambda$ being a paramet	er, all passing through a point P				
	. One of these lines (say <i>L</i>) is farthest from the origin. If the distance of <i>L</i> from the point (3,6) is <i>d</i> , then the value of d^2 is							
	(1) 30	(2) 15	(3) 20	(4) 10				
10.	Let $f: \mathbf{R} \to \mathbf{R}$ be a fu	Inction defined by $f(x)$	= x+2 -2 x . If m	is the number of points of local				
	minima and n is the number of points of local maxima of f then $m+n$ is							
	(1) 5	(2) 3	(3) 2	(4) 4				
11	The distance of the poir	(7.10,11) from the line	x - 4 - y - 4 - z - 2	along the line				
	The distance of the poir			along the line				
	$\frac{x-9}{z-13} = \frac{y-13}{z-17}$ is							
	2 3 6	(2) 16	(2) 12	(4) 14				
10	The erect of the region	(z) 10						
12.	510	$\{(x, y) : x - y \le y \le 4\}$	1024					
	(1) $\frac{312}{3}$	(2) $\frac{2048}{3}$	(3) $\frac{1024}{3}$	(4) 512				
40		2(12, b) = 2 have a	well south. These the slight	(k)				
13.	Let the equation $x(x+2)(12-k)=2$ have equal roots. Then the distance of the point $\binom{k}{2}$ from							
	the line $3x+4y+5=0$) is						
	(1) 15√5	(2) 15	(3) 5√3	(4) 12				
14.	Let $A = \{-2, -1, 0, 1, 2, 3\}$. Let R be a relation on A defined by xRy if and only if $y = \max\{x, 1\}$. Let							
	l be the number of elements in R. Let m and n be the minimum number of elements required to be							
	added in ${f R}$ to make it reflexive and symmetric relations, respectively. Then $l+m+n$ is equal to							
	(1) 12	(2) 14	(3) 11	(4) 13				
15.	If $z_1, z_2, z_3 \in \square$ are the vertices of an equilateral triangle, whose centroid is z_0 , then $\sum_{k=1}^{3} (z_k - z_0)^2$ is							
	k=1							
	equal to	(2) i	(3) -i	(4) 1				
46	- 1+3 1+	3+5 1+3+5+7	(-/ ·	···				
16.	The sum $1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$ up to ∞ terms, is equal to							
	(1) 3e	(2) 6e	(3) 2e	(4) 4e				
C	competishun The Power of Real Gurus	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020						
		Мов. 7410900901, 7410900	906, 7410900907, 741090090	8 2				

Let the Mean and Variance of five observations $x_1 = 1, x_2 = 3, x_3 = a, x_4 = 7$ and $x_5 = b, a > b$, be 5 17. and 10 respectively. Then the Variance of the observations $n + x_n$, n = 1, 2, ..., 5 is (1) 17.4(4) 16.4 (2) 17 (3) 16 If the four distinct points (4,6), (-1,5), (0,0) and (k,3k) lie on a circle of radius r, then $10k + r^2$ is 18. equal to (2) 35 (3) 34 (4) 33 (1) 32Each of the angles β and γ that a given line makes with the positive y - and z -axes, respectively, is 19. half of the angle that this line makes with the positive x-axes. Then the sum of all possible values of the angle β is

(1)
$$\frac{\pi}{2}$$
 (2) π (3) $\frac{3\pi}{2}$ (4) $\frac{3\pi}{4}$

20. The number of solutions of the equation $(4 - \sqrt{3}) \sin x - 2\sqrt{3} \cos^2 x = -\frac{4}{1 + \sqrt{3}}, x \in \left[-2\pi, \frac{5\pi}{2}\right]$ is (1) 3 (2) 5 (3) 4 (4) 6

SECTION-B

21. If
$$\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p$$
, then $96 \log_e p$ is equal to

22. Let *I* be the identity matrix of order 3×3 and for the matrix $A = \begin{bmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{bmatrix}$, |A| = -1. Let *B* be

the inverse of the matrix $adj(Aadj(A^2))$. Then $|(\lambda B + I)|$ is equal to _____

- 23. Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}, \vec{b} = 3\hat{i} 3\hat{j} + 3\hat{k}, \vec{c} = 2\hat{i} \hat{j} + 2\hat{k}$ and \vec{d} be a vector such that $\vec{b} \times \vec{d} = \vec{c} \times \vec{d}$ and $\vec{a} \cdot \vec{d} = 4$. Then $|(\vec{a} \times \vec{d})|^2$ is equal to
- 24. If the equation of the hyperbola with foci (4,2) and (8,2) is $3x^2 y^2 \alpha x + \beta y + \gamma = 0$, then $\alpha + \beta + \gamma$ is equal to _____.
- 25. Let $(1+x+x^2)^{10} = a_0 + a_1x + a_2x^2 + \ldots + a_{20}x^{20}$. If $(a_1 + a_3 + a_5 + \ldots + a_{19}) 11a_2 = 121k$, then k is equal to ______.

	NTA ANSWERS												
1.	(3)	2.	(4)	3.	(4)	4.	(2)	5.	(2)	6.	(3)	7.	(4)
8.	(1)	9.	(3)	10.	(2)	11.	(2)	12.	(3)	13.	(2)	14.	(1)
15.	(1)	16.	(3)	17.	(3)	18.	(2)	19.	(4)	20.	(2)	21.	(32)
22.	(38)	23.	(128)	24.	(141)	25.	(239)						

Co competishun	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020				
The Power of Real Gurus	Мов. 7410900901, 7410900906, 7410900907, 7410900908	3			
	www.competishun.com	3			