JEE-MAIN EXAM APRIL, 2025

Date: - 04-04-2025 (SHIFT-1)

MATHEMATICS

SECTION-A

 $1+3+5^2+7+9^2+...$ upto 40 terms is equal to 1. (2) 43890 (1) 40870 (3) 41880 (4) 33980Let $f:[0,\infty) \to \mathbb{R}$ be a differentiable function such that 2. $f(x) = 1 - 2x + \int_{0}^{x} e^{x-t} f(t) dt$ for all $x \in [0, \infty)$ Then the area of the region bounded by y = f(x) and the coordinate axes is (2) $\frac{1}{2}$ (1) $\sqrt{2}$ $(3) \sqrt{5}$ (4) 2 3. The probability, of forming a 12 persons committee from 4 engineers, 2 doctors and 10 professors containing at least 3 engineers and at least 1 doctor, is (1) $\frac{103}{182}$ (2) $\frac{17}{26}$ (4) $\frac{129}{182}$ (3) $\frac{19}{26}$ Consider two vectors 4. $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda\hat{k}, \lambda > 0$. The angle between them is given by $\cos^{-1}\left(\frac{\sqrt{5}}{2\sqrt{7}}\right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where \vec{v}_1 is parallel to \vec{u} and \vec{v}_2 is perpendicular to \vec{u} . Then the value $\left|\vec{v}_1\right|^2 + \left|\vec{v}_2\right|^2$ is equal to (1) 14(2) 10(3) $\frac{25}{2}$ (4) $\frac{23}{2}$ If $10\sin^4\theta + 15\cos^4\theta = 6$, then the value of $\frac{27\csc^6\theta + 8\sec^6\theta}{16\sec^8\theta}$ is 5. (3) $\frac{2}{5}$ (2) $\frac{3}{5}$ (4) $\frac{3}{4}$ $(1) \frac{1}{5}$ OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni ompeti Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 Мов. 7410900901, 7410900906, 7410900907, 7410900908 1

www.competishun.com

6.	Let $f, g: (1,\infty) \to \mathbb{R}$ be defined as $f(x) = \frac{2x+3}{5x+2}$ and $g(x) = \frac{2-3x}{1-x}$. If the range of the function									
	fog : $[2,4] \rightarrow \mathbb{R}$ is $[\alpha,\beta]$, then $\frac{1}{\beta-\alpha}$ is equal to									
	(1) 68	(2) 56	(3) 29	(4) 2						
7.	Let A and B be two dist	inct points on the line $ I$	$x : \frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$. Both A and B are at a distance						
	$2\sqrt{17}$ from the foot of perpendicular drawn from the point $(1,2,3)$ on the line L. If O is the origin,									
	then $\overrightarrow{OA} \cdot \overrightarrow{OB}$ is equal	then $\overrightarrow{OA} \cdot \overrightarrow{OB}$ is equal to								
	(1) 62	(2) 47	(3) 21	(4) 49						
8.	Let the shortest distar	nce between the lines	$\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}$	and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}$ be						
	$3\sqrt{30}$. Then the positiv	ve value of $5lpha+eta$ is								
	(1) 48	(2) 42	(3) 40	(4) 46						
9.	For an integer $n \ge 2$, i	f the arithmetic mean of	all coefficients in the bi	nomial expansion of $(x+y)^{2n-3}$						
	is 16 , then the distance	e of the point $P(2n-1, n)$	$n^2 - 4n$) from the line x	x + y = 8 is						
	(1) $2\sqrt{2}$	(2) $\sqrt{2}$	(3) 5√2	(4) 3√2						
10.	Let $A = \{1, 6, 11, 16,$	$B = \{9, 16, 23, 3, 3, 5, 16, 23, 3, 3, 5, 16, 23, 3, 3, 5, 16, 23, 3, 3, 3, 5, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16$	$30, \ldots$ be the sets cons	sisting of the first 2025 terms of						
	two arithmetic progressions. Then $n(A \cup B)$ is									
	(1) 4027	(2) 3814	(3) 3761	(4) 4003						
11.	Consider the equation	$x^2 + 4x - n = 0$, where	$n \in [20, 100]$ is a natu	ral number. Then the number of						
	all distinct values of n ,	for which the given equa	ation has integral roots, i	is equal to						
	(1) 7	(2) 6	(3) 5	(4) 8						
12.	Consider the sets	$A = \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} \right\}$	$:x^{2}+y^{2}=25$, $B=\{(:$	$(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + 9y^2 = 144 \Big\},$						
	$C = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \le 4\}$ and $D = A \cap B$. The total number of one-one functions from the									
	set D to the set C is:	,								
	(1) 17160	(2) 15120	(3) 18290	(4) 19320						
13.	Considering the principation	al values of the inverse	trigonometric functions,							
	$\sin^{-1}\left(\frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{1-x^2}\right), -\frac{1}{2} < x < \frac{1}{\sqrt{2}}$, is equal to									
	(1) $\frac{5\pi}{6} - \sin^{-1}x$		(2) $\frac{\pi}{4} + \sin^{-1} x$							
	(3) $\frac{-5\pi}{6} - \sin^{-1}x$		(4) $\frac{\pi}{6} + \sin^{-1} x$							
	competishun	OFFICE ADDRESS : Plot numbe Nagar, Gopal Pura Mode, Jaip	er 35, Gopalpura Bypass Rd, ne our, Rajasthan 302020	ar Riddhi Siddhi Circle, 10 B Scheme, Triveni						
	The Power of Real Gurus	Мов. 7410900901, 741090090	06, 7410900907, 7410900908	2						

www.competishun.com

14.	If $\lim_{x \to 1^+} \frac{(x-1)(6+\lambda\cos(x-1)) + \mu\sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to								
	(1) 18	(2) 19	(3) 17	(4) 20					
15.	Let $f : \mathbb{R} \to \mathbb{R}$ be a	continuous function satis	fying $f(0) = 1$ and $f(2)$	$2x) - f(x) = x$ for all $x \in \mathbb{R}$. If					
	$\lim_{n \to \infty} \left\{ f(x) - f\left(\frac{x}{2^n}\right) \right\} = G(x) \text{, then } \sum_{r=1}^{10} G\left(r^2\right) \text{ is equal to}$								
	(1) 215	(2) 540	(3) 420	(4) 385					
16.	The value of $\int_{-1}^{1} \frac{(1+\sqrt{2})^2}{(1+\sqrt{2})^2} dt$	$\frac{ x -x}{e^x} + (\sqrt{ x -x})e^x + (\sqrt{ x -x})e^x + e^{-x}$	-x - dx is equal to						
	(1) $1 + \frac{2\sqrt{2}}{3}$		(2) $2 + \frac{2\sqrt{2}}{3}$						
	(3) $3 - \frac{2\sqrt{2}}{3}$		(4) $1 - \frac{2\sqrt{2}}{3}$						
17.	Let the three sides of	a triangle are on the line	es $4x - 7y + 10 = 0, x + 10 $	y=5 and $7x+4y=15$. Then					
	the distance of its orthocentre from the orthocentre of the tringle formed by the lines $x = 0, y = 0$ and								
	x + y = 1 is								
	(1) $\sqrt{5}$	(2) 5	(3) $\sqrt{20}$	(4) 20					
18.	A box contains 10 pens of which 3 are defective. A sample of 2 pensis drawn at random and let X								
	denote the number of o	defective pens. Then the	variance of X is						
	(1) $\frac{2}{15}$	(2) $\frac{28}{75}$	(3) $\frac{11}{15}$	(4) $\frac{3}{5}$					
	15	75	15	5					
19.	In the expansion of $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$, $n \in \mathbb{N}$, if the ratio of 15^{th} term from the beginning to the 15^{th} term								
	from the end is $rac{1}{6}$, then the value of ${}^nC_3^{}$ is								
	(1) 2300	(2) 1040	(3) 4060	(4) 4960					
20.	The length of the latus	The length of the latus-rectum of the ellipse, whose foci are $(2,5)$ and $(2,-3)$ and eccentricity is $\frac{4}{5}$, is							
	(1) $\frac{6}{5}$	(2) $\frac{10}{3}$	(3) $\frac{18}{5}$	(4) $\frac{50}{3}$					
SECTION-B									

21. Let *m* and *n* be the number of points at which the function $f(x) = \max\{x, x^3, x^5, ..., x^{21}\}, x \in \mathbb{R}$, is not differentiable and not continuous, respectively. Then m + n is equal to _____

Competishun	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020				
The Power of Real Gurus	Мов. 7410900901, 7410900906, 7410900907, 7410900908	3			
	www.competishun.com				

22. If the area of the region $\{(x, y) : | x - 5 | \le y \le 4\sqrt{x}\}$ is A, then 3A is equal to ______ 23. Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi), A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to ______. 24. Let $A = \{z \in C : | z - 2 - i | = 3\}, B = \{z \in C : \operatorname{Re}(z - iz) = 2\}$ and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to ______.

25. Let *C* be the circle $x^2 + (y-1)^2 = 2$, E_1 and E_2 be two ellipses whose centres lie at the origin and 2 major axes lie on x-axis and y-axis respectively. Let the straight line x + y = 3 touch the curves C, E_1 and E_2 at $P(x_1, y_1), Q(x_2, y_2)$ and $R(x_3, y_3)$ respectively. Given that *P* is the mid point of the line segment QR and $PQ = \frac{2\sqrt{2}}{3}$, the value of $9(x_1y_1 + x_2y_2 + x_3y_3)$ is equal to ______

NTA ANSWERS													
1.	(3)	2.	(2)	3.	(4)	4.	(1)	5.	(3)	6.	(2)	7.	(2)
8.	(4)	9.	(4)	10.	(3)	11.	(2)	12.	(1)	13.	(4)	14.	(1)
15.	(4)	16.	(1)	17.	(1)	18.	(2)	19.	(1)	20.	(3)	21.	(3)
22.	(368)	23.	(6)	24.	(22)	25.	(46)						

competishun	O FFICE A DDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020					
The Power of Real Gurus	Мов. 7410900901, 7410900906, 7410900907, 7410900908	Λ				
	www.competishun.com	4				