JEE-MAIN EXAM APRIL, 2025

Date: - 04-04-2025 (SHIFT-2)

MATHEMATICS

SECTION-A

1. The axis of a parabola is the line y = x and its vertex and focus are in the first quadrant at distances $\sqrt{2}$ and $2\sqrt{2}$ units from the origin, respectively. If the point (1, k) lies on the parabola, then a possible value of k is :

2. Let the values of p, for which the shortest distance between the lines $\frac{x+1}{3} = \frac{y}{4} = \frac{z}{5}$ and

 $\vec{r} = (p\hat{i} + 2\hat{j} + \hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 4\hat{k})$ is $\frac{1}{\sqrt{6}}$, be a, b, (a < b). Then the length of the latus rectum of

the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 is :
(1) $\frac{2}{3}$ (2) 18 (3) 9 (4) $\frac{2}{3}$
 $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

3. Let the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ satisfy $A^n = A^{n-2} + A^2 - 1$ for $n \ge 3$. Then the sum of all the elements

of A^{50} is :

4. Consider two sets A and B, each containing three numbers in A.P. Let the sum and the product of the elements of A be 36 and p respectively and the sum and the product of the elements of B be 36 and q respectively. Let d and D be the common differences of AP's in A and B respectively such that

$$D = d + 3, d > 0$$
. If $\frac{p+q}{p-q} = \frac{19}{5}$, then $p-q$ is equal to
(1) 630 (2) 540 (3) 450 (4) 600

5. If
$$1^2 \cdot \binom{15}{C_1} + 2^2 \cdot \binom{15}{C_2} + 3^2 \cdot \binom{15}{C_3} + \ldots + 15^2 \cdot \binom{15}{C_{15}} = 2^m \cdot 3^n \cdot 5^k$$
, where $m, n, k \in \mathbb{N}$, then

$$m+n+k$$
 is equal to :

6.	Let f be a differentiable function on \mathbf{R} such that $f(2) = 1, f'(2) = 4$. Let $\lim_{x \to 0} (f(2+x))^{3/x} = \mathbf{e}^{\alpha}$.									
	Then the number of times the curve $y = 4x^3 - 4x^2 - 4(\alpha - 7)x - \alpha$ meets x-axis is :									
	(1) 1	(2) 3	(3) 0	(4) 2						
7.	Let the mean and the	standard deviation of	the observation 2, 3, 3	3, 4, 5, 7,	a, b be 4 and $\sqrt{2}$					
	respectively. Then the mean deviation about the mode of these observations is :									
	(1) $\frac{3}{4}$		(2) 2							
	(3) $\frac{1}{2}$		(4) 1							
8.	Let A be the point of inte	ersection of the lines L_1	$:\frac{x-7}{1} = \frac{y-5}{0} = \frac{z-3}{-1}$	and $L_2:$	$\frac{x-1}{3} = \frac{y+3}{4} = \frac{z+7}{5}$					
	. Let B and C be the points on the lines $ m L_1$ and $ m L_2$ respectively such that $AB=AC=\sqrt{15}$. Then the									
	square of the area of the triangle ABC is :									
	(1) 57	(2) 60	(3) 63	(4) 54						
9.	Let for two distinct value	es of p the lines $y = x + y = x + y$	\mathbf{p} touch the ellipse \mathbf{E} :	$\frac{x^2}{4^2} + \frac{y^2}{3^2} =$	1 at the points A and					
	B. Let the line $y = x$ intersect E at the points C and D. Then the area of the quadrilateral ABCD is									
	equal to :									
	(1) 24	(2) 20	(3) 48	<mark>(4)</mark> 36						
10.	If the sum of the first 20	terms of the series								
	$\frac{4 \cdot 1}{4 \cdot 2 \cdot 1^2 + 1^4} + \frac{4 \cdot 2}{4 \cdot 2 \cdot 2^2 + 2^4} + \frac{4 \cdot 3}{4 \cdot 2 \cdot 2^2 + 2^4} + \frac{4 \cdot 4}{4 \cdot 2 \cdot 2^2 + 2^4} + \dots \text{ is } \frac{m}{4},$									
	$4+3\cdot 1^{-}+1^{-}$ $4+3\cdot 2^{-}+2^{-}$ $4+3\cdot 3^{-}+3^{-}$ $4+3\cdot 4^{-}+4^{-}$ n where <i>m</i> and <i>n</i> are coprime then $m+n$ is equal to :									
	(1) 423	(2) 420	(3) 422	(4) 421						
11	A line passing through t	the point $A(-2,0)$ tou	(0) (2)	$v^2 - r - 2 = 2$	at the point B in the					
	A line passing through the point $A(-2,0)$, touches the parabola $P: y = x - 2$ at the point B in the									
	tirst quadrant. The area, of the region bounded by the line AB, parabola P and the x-axis, is :									
	(1) $\frac{7}{3}$	(2) $\frac{8}{3}$	(3) 3	(4) 2						
12.	If a curve $y = y(x)$	passes through the	point $\left(1, \frac{\pi}{2}\right)$ and sat	isfies the	differential equation					
	$(7x^4 \cot y - e^x \csc y) \frac{dx}{dy} = x^5, x \ge 1$, then at $x = 2$, the value of $\cos y$ is :									
	(1) $\frac{2e^2 - e}{128}$	(2) $\frac{2e^2 - e}{64}$	(3) $\frac{2e^2 + e}{128}$	(4) $\frac{2e^2 + 64}{64}$	<u>• e</u>					
		OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gonal Pura Mode, Jainur, Rajasthan 302020								
CO	COMPETISION The Power of Real Gurus	Мов. 7410900901, 741090090	6, 7410900907, 7410900908							
		www.competishun.com								

13.	Let $A = \{-3, -2, -1, 0, 1, 2, 3\}$ and R be a relation on A defined by xRy if and only if $2x - y \in \{0, 1\}$.								
	Let l be the number of elements in R . Let m and n be the minimum number of elements required to								
	be added in R to make it reflexive and symmetric relations, respectively. Then $l+m+n$ is equal to :								
	(1) 15	(2) 16	(3) 18	(4) 17					
14.	Let $f(x) + 2f\left(\frac{1}{x}\right) = x$	$x^{2} + 5$ and $2g(x) - 3g(x)$	$\left(\frac{1}{2}\right) = x, x > 0. \text{ If } \alpha = \int$	$\int_{1}^{2} f(x) dx$, and $\beta = \int_{1}^{2} g(x) dx$,					
	then the value of $9\alpha + \frac{1}{2}$	eta is :							
	(1) 11	(2) 10	(3) 0	(4) 1					
15.	The centre of a circle C	Σ is at the centre of the ϵ	ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,	a > b . Let C pass through the					
	foci F_1 and F_2 of E such that the circle C and the ellipse E intersect at four points. Let P be one of								
	these four points. If the area of the triangle PF_1F_2 is 30 and the length of the major axis of E is 17, then								
	the distance between the foci of E is :								
	(1) 26	(2) 12	(3) $\frac{13}{2}$	(4) 13					
16.	Let the product of $\omega_{\rm l}=$	$(8+i)\sin\theta + (7+4i)c$	$\cos\theta$ and $\omega_2 = (1+8i)s$	$\frac{1}{100} + (4+7i)\cos\theta$ be $\alpha + i\beta$					
	, $i = \sqrt{-1}$. Let p and q be the maximum and the minimum values of $\alpha + \beta$ respectively. Then $p + q$								
	is equal to :								
	(1) 150	(2) 160	(3) 140	(4) 130					
17.	Let the domains	of the functions	$f(x) = \log_4 \log_3 \log_7$	$(8 - \log_2(x^2 + 4x + 5))$ and					
	$g(x) = \sin^{-1}\left(\frac{7x+10}{x-2}\right)$ be (α, β) and $[\gamma, \delta]$, respectively. Then $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ is equal to :								
	(1) 13	(2) 14	(3) 16	(4) 15					
18.	Let the sum of the foca	I distances of the point	P(4,3) on the hyperbo	la H: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ be $8\sqrt{\frac{5}{3}}$. If					
	for H, the length of the l	atus rectum is l and the	e product of the focal dis	tances of the point P is m , then					
	$9l^2 + 6m$ is equal to :								
	(1) 184	(2) 185	(3) 186	(4) 187					
19.	The sum of the infinite s	series $\cot^{-1}\left(\frac{7}{4}\right) + \cot^{-1}$	$\left(\frac{19}{4}\right) + \cot^{-1}\left(\frac{39}{4}\right) + \cot^{-1}\left(\frac{39}$	$\operatorname{ot}^{-1}\left(\frac{67}{4}\right) + \dots$ is :					
	(1) $\frac{\pi}{2} - \tan^{-1}\left(\frac{1}{2}\right)$		(2) $\frac{\pi}{2} + \tan^{-1}\left(\frac{1}{2}\right)$						
	(3) $\frac{\pi}{2} + \cot^{-1}\left(\frac{1}{2}\right)$		(4) $\frac{\pi}{2} - \cot^{-1}\left(\frac{1}{2}\right)$						
	competishun	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020							
	The Power of Real Gurus	Мов. 7410900901, 741090090	6, 7410900907, 7410900908	3					

Мов. 7410900901, 7410900906, 7410900907, 7410900908 www.competishun.com

20. Let a > 0. If the function $f(x) = 6x^3 - 45ax^2 + 108a^2x + 1$ attains its local maximum and minimum values at the points x_1 and x_2 respectively such that $x_1x_2 = 54$, then $a + x_1 + x_2$ is equal to : (1) 15 (2) 13 (3) 18 (4) 24

SECTION-B

- 21. Let the three sides of a triangle ABC be given by the vectors $2\hat{i} \hat{j} + \hat{k}, \hat{i} 3\hat{j} 5\hat{k}$ and $3\hat{i} 4\hat{j} 4\hat{k}$. Let G be the centroid of the triangle ABC. Then $6\left(|\overrightarrow{AG}|^2 + |\overrightarrow{BG}|^2 + |\overrightarrow{CG}|^2\right)$ is equal to
- **22.** If α is a root of the equation $x^2 + x + 1 = 0$ and $\sum_{k=1}^{n} \left(\alpha^k + \frac{1}{\alpha^k} \right)^2 = 20$, then n is equal to _____.
- **23.** A card from a pack of 52 cards is lost. From the remaining 51 cards, n cards are drawn and are found to be spades. If the probability of the lost card to be a spade is $\frac{11}{50}$, then n is equal to _____.

24. If
$$\int \frac{\left(\sqrt{1+x^2}+x\right)^{10}}{\left(\sqrt{1+x^2}-x\right)^9} dx = \frac{1}{m} \left(\left(\sqrt{1+x^2}+x\right)^n \left(\pi\sqrt{1+x^2}-x\right) \right) + C \text{ where } C \text{ is the constant of}$$

integration and $\mathbf{m},\mathbf{n}\in\mathbf{N}$, then $\mathbf{m}+\mathbf{n}$ is equal to ______

25. Let m and n(m < n), be two 2-digit numbers. Then the total numbers of pairs (m,n), such that gcd(m,n) = 6, is _____.

NTA ANSWERS													
1.	(4)	2.	(1)	3.	(3)	4.	(2)	5.	(4)	6.	(4)	7.	(4)
8.	(4)	9.	(1)	10.	(4)	11.	(2)	12.	(1)	13.	(4)	14.	(1)
15.	(4)	16.	(4)	17.	(4)	18.	(2)	19.	(1)	20.	(3)	21.	(164)
22.	(11)	23.	(2)	24.	(379)	25.	(64)						

 OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni

 Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

 Mob. 7410900901, 7410900906, 7410900907, 7410900908

 www.competishun.com