JEE-MAIN EXAM APRIL, 2024

Date: - 04-04-2024 (SHIFT-2)

MATHEMATICS

SECTION-A

1.	If the function $f(x)$ =	$=\begin{cases} \frac{72^{x}-9^{x}-8^{x}+1}{\sqrt{2}-\sqrt{1+\cos x}} & ,x \neq 0\\ \log_{e} 2\log_{e} 3 & ,x = 0 \end{cases}$ is	s continuous at $x = 0$,	, then the value of a^2 is equal to					
	(1) 968	(2) 1152	(3) 746	(4) 1250					
2.	If $\lambda > 0$, let θ be the	angle between the vector	ors $\vec{a} = \hat{\imath} + \lambda \hat{\jmath} - 3\hat{k}$ ar	and $\vec{b} = 3\hat{\imath} - \hat{\jmath} + 2\hat{k}$. If the vectors $\vec{a} + \vec{b}$					
	and $\vec{a} - \vec{b}$ are mutually perpendicular, then the value of $(14\cos\theta)^2$ is equal to								
	(1) 25	(2) 20	(3) 50	(4) 40					
3.	Let C be a circle with	radius $\sqrt{10}$ units and ce	entre at the origin. Le	t the line $x + y = 2$ intersects the circle					
	C at the points P and	l Q. Let MN be a chord o	f C of length 2 unit ar	nd slope -1. Then, a distance (in units)					
	between the chord F	Q and the chord MN is							
	(1) $2 - \sqrt{3}$	(2) 3 − √2	$(3)\sqrt{2}-1$	(4) $\sqrt{2} + 1$					
4.	Let a relation R on N	$I \times \mathbb{N}$ be defined as :							
	$(x_1, y_1)R(x_2, y_2)$ if and only if $x_1 \le x_2$ or $y_1 \le y_2$								
	Consider the two statements :								
	(I) <i>R</i> is reflexive but not symmetric.								
	(II) R is transitive								
	Then which one of the								
	(1) Only (II) is correc	xt.	(2) Only (I) is c	(2) Only (I) is correct.					
_	(3) Both (I) and (II) a	re correct.	(4) Neither (I) n	(4) Neither (I) nor (II) is correct.					
5.	Let three real numbers a, b, c be in arithmetic progression and $a + 1, b, c + 3$ be in geometric progressio								
	If $a > 10$ and the arit	thmetic mean of a, b and	c is 8, then the cube	8, then the cube of the geometric mean of a, b and c is					
	(1) 120	(2) 312	(3) 316	(4) 128					
6.	Let $A = \begin{bmatrix} I & 2 \\ 0 & 1 \end{bmatrix}$ and $B = I + adj(A) + (adj A)^2 + \dots + (adj A)^{10}$. Then, the sum of all the elements of the								
	matrix B is :								
	(1) -110	(2) 22	(3) -88	(4) -124					
7.	The value of $\frac{1 \times 2^2 + 2 \times 2}{1^2 \times 2 + 2^2}$	$\frac{3^2 + \dots + 100 \times (101)^2}{2 \times 3 + \dots + 10^{-2} \times 101}$ is							
	$(1)\frac{306}{305}$	$(2)\frac{305}{301}$	$(3)\frac{32}{31}$	$(4)\frac{31}{30}$					

8.	Let $f(x) = \int_0^x (t + \sin(1 - e^t)) dt$, $x \in \mathbb{R}$.									
	Then $\lim_{x\to 0} \frac{f(x)}{x^3}$ is equal to									
	$(1)\frac{1}{6}$	$(2) - \frac{1}{6}$			$(3) - \frac{2}{3}$			$(4)\frac{2}{3}$		
9.	The area (in sq. units) of the region described by $\{(x, y): y^2 \le 2x, \text{ and } y \ge 4x - 1\}$ is									
	$(1)\frac{11}{32}$	$(2)\frac{8}{9}$			$(3)\frac{11}{12}$			$(4)\frac{9}{32}$		
10.	The area (in sq. units) of the region $S = \{z \in \mathbb{C}; z - 1 \le 2; (z + \overline{z}) + i(z - \overline{z}) \le 2, lm(z) \ge 0\}$ is							$(z - \overline{z}) \le 2$, $lm(z) \ge 0$ } is		
	$(1)\frac{7\pi}{3}$	$(2)\frac{3\pi}{2}$			$(3)\frac{17\pi}{8}$			$(4) \frac{7\pi}{4}$		
11.	If the value of the integr	al $\int_{-1}^{1} \frac{\cos \alpha x}{1+3^x} dx$	dx is $\frac{2}{n}$	$\frac{2}{\tau}$. Then	, a value	of α is				
	$(1)\frac{\pi}{6}$	(2) $\frac{\pi}{2}$			$(3)\frac{\pi}{3}$			(4) $\frac{\pi}{4}$		
12.	Let $f(x) = 3\sqrt{x-2} + \sqrt{4}$	- x be a rea	al valu	ied fun	ction. If α	and β	are re	espectively the minimum and the		
	maximum values of f , t	hen $\alpha^2 + 2\beta$	² is e	qual to						
	(1) 44	(2) 42			(3) 24			(4) 38		
13.	If the coefficients of x^4 ,	x^5 and x^6 in	the e	xpansi	on of (1 +	- x) ⁿ a	re in th	ne arithmetic progression, then the		
	maximum value of n is :									
	(1) 14	(2) 21			(3) 28			(4) 7		
14.	Consider a hyperbola H having centre at the origin and foci and the x-axis. Let C_1 be the circle touching						$\frac{1}{2}$ axis. Let C_1 be the circle touching			
	the hyperbola H and having the centre at the origin. Let C_2 be the circle touching the hyperbola H at its									
	vertex and having the centre at one of its foci. If areas (in sq. units) of C_1 and C_2 are 36π and 4π ,									
	respectively, then the length (in units) of latus rectum of H is									
	$(1)\frac{26}{3}$	$(2)\frac{14}{3}$			$(3)\frac{10}{3}$			$(4)\frac{11}{3}$		
15.	If the mean of the follow	ving probabil	ity dis	stributic	on of a rar	ndom v	/ariabl	e X;		
		X	0	2	4	6	8			
		P(X)	а	2a	a + b	2 <i>b</i>	3 <i>b</i>			
	is $\frac{46}{9}$, then the variance	of the distrib	ution	is						
	$(1)\frac{581}{81}$	$(2)\frac{566}{81}$			$(3)\frac{173}{27}$			$(4)\frac{151}{27}$		
16.	Let PQ be a chord of the	e parabola y	$^{2} = 1$	2 <i>x</i> and	the midp	oint of	PQ be	e at (4,1). Then, which of the		
	following point lies on the line passing through the points P and Q?									
	(1) (3, -3)	(2) $\left(\frac{3}{2}, -16\right)$	5)		(3) (2, -	-9)		$(4)\left(\frac{1}{2},-20\right)$		
17.	Given the inverse trigon	ometric fund	ction a	assume	es principa	al valu	es onl	y. Let x, y be any two real numbers		
	in $[-1,1]$ such that $\cos^{-1} x - \sin^{-1} y = \alpha, \frac{-\pi}{2} \le \alpha \le \pi$. Then, the minimum value of $x^2 + y^2 + 2xy\sin\alpha$ is									
	(1) -1	(2) 0			$(3)\frac{-1}{2}$			$(4)\frac{1}{2}$		

18.	Let $y = y(x)$ be the solution of the differential equation $(x^2 + 4)^2 dy + (2x^3y + 8xy - 2)dx = 0$. If $y(0) =$							
	0, then $y(2)$ is equal to							
	$(1)\frac{\pi}{8}$	(2) $\frac{\pi}{16}$	(3) 2π	$(4)\frac{\pi}{32}$				
19.	Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = x\hat{i} + 2\hat{j} + 3\hat{k}$, $x \in \mathbb{R}$. If \vec{d} is the unit vector in the direction of							
	$\vec{b} + \vec{c}$ such that $\vec{a} \cdot \vec{d} = 1$, then $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is equal to							
	(1) 9	(2) 6	(3) 3	(4) 11				
20.	Let P the point of intersection of the lines $\frac{x-2}{1} = \frac{y-4}{5} = \frac{z-2}{1}$ and $\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-3}{2}$. Then, the shortest distance							
	of P from the line $4x = 2y = z$ is							
	(1) $\frac{5\sqrt{14}}{7}$	(2) $\frac{\sqrt{14}}{7}$	$(3)\frac{3\sqrt{14}}{7}$	$(4) \frac{6\sqrt{14}}{7}$				
SECTION-B								

- **21.** Let $S = {\sin^2 2\theta : (\sin^4 \theta + \cos^4 \theta)x^2 + (\sin 2\theta)x + (\sin^6 \theta + \cos^6 \theta) = 0 \text{ has real roots}}.$ If α and β be the smallest and largest elements of the set S, respectively, then $3((\alpha 2)^2 + (\beta 1)^2)$ equals....
- **22.** If $\int \csc^5 x dx = \alpha \cot x \csc x \left(\csc^2 x + \frac{3}{2} \right) + \beta \log_e \left| \tan \frac{x}{2} \right| + C$ where $\alpha, \beta \in \mathbb{R}$ and C is constant of integration then the value of $8(\alpha + \beta)$ equals
- **23.** Let $f: \mathbb{R} \to \mathbb{R}$ be a thrice differentiable function such that f(0) = 0, f(1) = 1, f(2) = -1, f(3) = 2 and f(4) = -2. Then, the minimum number of zeros of (3f'f'' + f''')(x) is
- 24. Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{2x}{\sqrt{1+9x^2}}$. If the composition of $f, (\underline{f \circ f \circ f \circ \dots \circ f})(x) = \frac{2^{10}x}{10 \text{ times}}$ then the vertex of $\sqrt{2-x+1}$ is a result.

 $\frac{2^{10}x}{\sqrt{1+9\alpha x^2}}$, then the value of $\sqrt{3\alpha+1}$ is equal to

- **25.** Let *A* be a 2 × 2 symmetric matrix such that $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$ and the determinant of *A* be 1. If $A^{-1} = \alpha A + \beta I$, where I is an identity matrix of order 2 × 2, then $\alpha + \beta$ equals
- **26.** There are 4 men and 5 women in Group A, and 5 men and 4 women in Group B. If 4 persons are selected from each group, then the number of ways of selecting 4 men and 4 women is
- 27. In a tournament, a team plays 10 matches with probabilities of winning and losing each match as $\frac{1}{3}$ and $\frac{2}{3}$ respectively. Let *x* be the number of matches that the team wins, and *y* be the number of matches that team loses. If the probability $P(|x y| \le 2)$ is p, then 3^9p equals....
- **28.** Consider a triangle ABC having the vertices A(1,2), B(α , β) and C(γ , δ) and angles $\angle ABC = \frac{\pi}{6}$ and $\angle BAC = \frac{2\pi}{3}$. If the points B and C lie on the line y = x + 4, then $\alpha^2 + \gamma^2$ is equal to
- **29.** Consider a line L passing through the points P(1,2,1) and Q(2,1,-1). If the mirror image of the point A(2,2,2) in the line L is (α, β, γ) , then $\alpha + \beta + 6\gamma$ is equal to
- **30.** Let y = y(x) be the solution of the differential equation $(x + y + 2)^2 dx = dy, y(0) = -2$. Let the maximum and minimum values of the function y = y(x) in $\left[0, \frac{\pi}{3}\right]$ be α and β , respectively. If $(3\alpha + \pi)^2 + \beta^2 = \gamma + \delta\sqrt{3}, \gamma, \delta \in \mathbb{Z}$, then $\gamma + \delta$ equals

OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 www.competishun.com

Mob. 8888-0000-21, 7410900901

NTA ANSWER									
1.	(2)	2.	(1)	3.	(2)	4.	(2)	5.	(1)
6.	(3)	7.	(2)	8.	(2)	9.	(4)	10.	(2)
11.	(2)	12.	(2)	13.	(1)	14.	(1)	15.	(2)
16.	(4)	17.	(2)	18.	(4)	19.	(4)	20.	(3)
21.	(4)	22.	(1)	23.	(5)	24.	(1024)	25.	(5)
26.	(5626)	27.	(8288)	28.	(14)	29.	(6)	30.	(31)

 OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle,

 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

 www.competishun.com

 Mob. 8888-0000-21, 7410900901