JEE-MAIN EXAM APRIL, 2024

Date: - 04-04-2024 (SHIFT-1)

MATHEMATICS

SECTION-A

1. Let $f: \mathbb{R} \to \mathbb{R}$ be a function given by

$$f(x) = \begin{cases} \frac{1 - \cos 2x}{x^2} & , x < 0\\ \alpha & , x = 0, \text{ where } \alpha, \beta \in R. \text{ If }\\ \frac{\beta\sqrt{1 - \cos x}}{x} & , x > 0 \end{cases}$$

f is continuous at x = 0, then $\alpha^2 + \beta^2$ is equal to :

2. Three urns A, B and C contain 7 red, 5 black; 5 red, 7 black and 6 red, 6 black balls, respectively. One of the urn is selected at random and a ball is drawn from it. If the ball drawn is black, then the probability that it is drawn from urn A is :

(1)
$$\frac{4}{17}$$
 (2) $\frac{5}{18}$ (3) $\frac{7}{18}$ (4) $\frac{4}{17}$

3. The vertices of a triangle are A(-1,3), B(-2,2) and C(3, -1). A new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is :

$$(1) x - y - (2 + \sqrt{2}) = 0 \qquad (2) - x + y - (2 - \sqrt{2}) = 0 (3) x + y - (2 - \sqrt{2}) = 0 (4) x + y + (2 - \sqrt{2}) = 0$$

4. If the solution y = y(x) of the differential equation $(x^4 + 2x^3 + 3x^2 + 2x + 2)dy - (2x^2 + 2x + 3)dx = 0$ satisfies $y(-1) = -\frac{\pi}{4}$, then y(0) is equal to :

(1)
$$-\frac{\pi}{12}$$
 (2) 0 (3) $\frac{\pi}{4}$ (4)

5. Let the sum of the maximum and the minimum values of the function $f(x) = \frac{2x^2 - 3x + 8}{2x^2 + 3x + 8}$ be $\frac{m}{n}$, where gcd(m, n) = 1. Then m + n is equal to :

6. One of the points of intersection of the curves $y = 1 + 3x - 2x^2$ and $y = \frac{1}{x}$ is $(\frac{1}{2}, 2)$. Let the area of the region enclosed by these curves be $\frac{1}{24}(\ell\sqrt{5} + m) - n\log_e(1 + \sqrt{5})$, where $\ell, m, n \in N$. Then $\ell + m + n$ is equal to (1) 32 (2) 30 (3) 29 (4) 31

OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 www.competishun.com Mob. 8888-0000-21, 7410900901

 $\frac{\pi}{2}$

 $x + (\sqrt{2}\sin\alpha)y + (\sqrt{2}\cos\alpha)z = 0$ $x + (\cos \alpha)y + (\sin \alpha)z = 0$ $x + (\sin \alpha)y - (\cos \alpha)z = 0$ has a non-trivial solution, then $\alpha \in \left(0, \frac{\pi}{2}\right)$ is equal to : $(1)\frac{3\pi}{4}$ $(2)\frac{7\pi}{2}$ $(3)\frac{5\pi}{24}$ $(4)\frac{11\pi}{24}$ There are 5 points P1, P2, P3, P4, P5 on the side AB, excluding A and B, of a triangle ABC. Similarly there are 8. 6 points P_6, P_7, \dots, P_{11} on the side BC and 7 points $P_{12}, P_{13}, \dots, P_{18}$ on the side CA of the triangle. The number of triangles, that can be formed using the points $P_1, P_2, ..., P_{18}$ as vertices, is : (1)776(3) 796 (4) 771 (2) 751 Let $f(x) = \begin{cases} -2, & -2 \le x \le 0\\ x - 2, & 0 < x \le 2 \end{cases}$ and h(x) = f(|x|) + |f(x)|. Then $\int_{-2}^{2} h(x) dx$ is equal to : 9. (3) 1 (1)2(4) 6The sum of all rational terms in the expansion of $\left(2^{\frac{1}{5}} + 5^{\frac{1}{3}}\right)^{15}$ is equal to : 10. (2) 633(1) 3133(3) 931 (4) 6131 Let a unit vector which makes an angle of 60° with $2\hat{i} + 2\hat{j} - \hat{k}$ and an angle of 45° with $\hat{i} - \hat{k}$ be \vec{C} . Then 11. $\vec{C} + \left(-\frac{1}{2}\hat{i} + \frac{1}{2\sqrt{2}}\hat{j} - \frac{\sqrt{2}}{2}\hat{k}\right)$ is : $(2)\frac{\sqrt{2}}{3}\hat{i} + \frac{1}{3\sqrt{2}}\hat{j} - \frac{1}{2}\hat{k}$ $(1) - \frac{\sqrt{2}}{3}\hat{i} + \frac{\sqrt{2}}{3}\hat{j} + \left(\frac{1}{2} + \frac{2\sqrt{2}}{3}\right)\hat{k}$ $(3)\left(\frac{1}{\sqrt{3}} + \frac{1}{2}\right)\hat{i} + \left(\frac{1}{\sqrt{3}} - \frac{1}{3\sqrt{2}}\right)\hat{j} + \left(\frac{1}{\sqrt{3}} + \frac{\sqrt{2}}{3}\right)\hat{k} \qquad (4)\frac{\sqrt{2}}{3}\hat{i} - \frac{1}{2}\hat{k}$ Let the first three terms 2, p and q, with $q \neq 2$, of a G.P. be respectively the 7th, 8th and 13th terms of an 12. A.P. If the 5th term of the G.P. is the nth term of the A.P., then n is equal to (1) 151 (2) 169 (3) 177 (4) 163 13. Let $a, b \in R$. Let the mean and the variance of 6 observations -3,4,7,-6,a,b be 2 and 23, respectively. The mean deviation about the mean of these 6 observations is : $(1)\frac{13}{2}$ $(2)\frac{16}{2}$ $(3)\frac{11}{2}$ $(4)\frac{14}{2}$ If 2 and 6 are the roots of the equation $ax^2 + bx + 1 = 0$, then the quadratic equation, whose roots are 14. $\frac{1}{2a+b}$ and $\frac{1}{6a+b}$, is : (1) $2x^2 + 11x + 12 = 0$ (2) $4x^2 + 14x + 12 = 0$ (3) $x^2 + 10x + 16 = 0$ (4) $x^2 + 8x + 12 = 0$ Let α and β be the sum and the product of all the non-zero solutions of the equation $(\bar{z})^2 + |z| = 0, z \in C$. 15. Then $4(\alpha^2 + \beta^2)$ is equal to : (1)6(2)4(3)8(4) 2Let the point, on the line passing through the points P(1, -2,3) and Q(5, -4,7), farther from the origin and 16. at a distance of 9 units from the point P, be (α, β, γ) . Then $\alpha^2 + \beta^2 + \gamma^2$ is equal to :

(1) 155 (2) 150 (3) 160 (4) 165

Competishun The Power of Real Gurus	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020			
	www.competishun.com			
	Mob. 8888-0000-21, 7410900901	-2		

A square is inscribed in the circle $x^2 + y^2 - 10x - 6y + 30 = 0$. One side of this square is parallel to y =17. x + 3. If (x_i, y_i) are the vertices of the square, then $\sum (x_i^2 + y_i^2)$ is equal to : (3) 160 (1) 148(2) 156 (4) 152 If the domain of the function $\sin^{-1}\left(\frac{3x^{-22}}{2x^{-19}}\right) + \log_e\left(\frac{3x^2-8x+5}{x^2-3x-1}\right)$ is $(\alpha,\beta]$, then $3\alpha + 10\beta$ is equal to : 18. (1) 97(2) 100Let $f(x) = x^5 + 2e^{x/4}$ for all $x \in \mathbb{R}$. Consider a function g(x) such that (gof) (x) = x for all $x \in \mathbb{R}$. Then the 19. value of 8 g'(2) is : (1) 16(3) 8(4) 2 Let $\alpha \in (0, \infty)$ and $A = \begin{bmatrix} 1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$. 20. If det $(adj(2A - A^T) \cdot adj(A - 2A^T)) = 2^8$, then $(det(A))^2$ is equal to : (1)1(2) 49(3) 16 (4) 36

SECTION-B

21. If
$$\lim_{x\to 1} \frac{(5x+1)^{1/3} - (x+5)^{1/3}}{(2x+3)^{1/2} - (x+4)^{1/2}} = \frac{m\sqrt{5}}{n(2n)^{2/3}}$$
, where gcd(m,n) = 1, then 8 m + 12n is equal to

- 22. In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let m and n respectively be the least and the most number of students who studied all the three subjects. Then m + n is equal to
- **23.** Let the solution y = y(x) of the differential equation $\frac{dy}{dx} y = 1 + 4\sin x$ satisfy $y(\pi) = 1$. Then $y\left(\frac{\pi}{2}\right) + 10$ is equal to
- 24. If the shortest distance between the lines $\frac{x+2}{2} = \frac{y+3}{3} = \frac{z-5}{4}$ and $\frac{x-3}{1} = \frac{y-2}{-3} = \frac{z+4}{2}$ is $\frac{38}{3\sqrt{5}}$ k and $\int_0^k [x^2] dx = \alpha \sqrt{\alpha}$, where [x] denotes the greatest integer function, then $6\alpha^3$ is equal to
- **25.** Let *A* be a square matrix of order 2 such that |A| = 2 and the sum of its diagonal elements is -3. If the points (x, y) satisfying $A^2 + xA + yI = 0$ lie on a hyperbola, whose transverse axis is parallel to the x-axis, eccentricity is e and the length of the latus rectum is ℓ , then $e^4 + \ell^4$ is equal to

26. Let
$$a = 1 + \frac{{}^{2}C_{2}}{3!} + \frac{{}^{3}C_{2}}{4!} + \frac{{}^{4}C_{2}}{5!} + \cdots$$
,
 $b = 1 + \frac{{}^{1}C_{0} + {}^{1}C_{1}}{1!} + \frac{{}^{2}C_{0} + {}^{2}C_{1} + {}^{2}C_{2}}{2!} + \frac{{}^{3}C_{0} + {}^{3}C_{1} + {}^{3}C_{2} + {}^{3}C_{3}}{3!} + \cdots$
Then $\frac{2b}{a^{2}}$ is equal to

27. Let *A* be a 3 × 3 matrix of non-negative real elements such that $A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Then the maximum value of

det(A) is

OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 www.competishun.com Mob. 8888-0000-21, 7410900901

- **28.** Let the length of the focal chord PQ of the parabola $y^2 = 12x$ be 15 units. If the distance of PQ from the origin is p, then $10p^2$ is equal to
- **29.** Let ABC be a triangle of area $15\sqrt{2}$ and the vectors $\overrightarrow{AB} = \hat{i} + 2\hat{j} 7\hat{k}$, $\overrightarrow{BC} = a\hat{i} + b\hat{j} + c\hat{k}$ and $\overrightarrow{AC} = 6\hat{i} + d\hat{j} 2\hat{k}$, d > 0. Then the square of the length of the largest side of the triangle ABC is
- **30.** If $\int_0^{\frac{\pi}{4}} \frac{\sin^2 x}{1+\sin x \cos x} dx = \frac{1}{a} \log_e \left(\frac{a}{3}\right) + \frac{\pi}{b\sqrt{3}}$, where $a, b \in \mathbb{N}$, then a + b is equal to

NTA ANSWER									
1.	(2)	2.	(2)	3.	(3)	4.	(3)	5.	(4)
6.	(2)	7.	(3)	8.	(2)	9.	(1)	10.	(1)
11.	(4)	12.	(4)	13.	(1)	14.	(4)	15.	(2)
16.	(1)	17.	(4)	18.	(1)	19.	(1)	20.	(3)
21.	(100)	22.	(45)	23.	(7)	24.	(48)	25.	(25)
26.	(8)	27.	(27)	28.	(72)	29.	(54)	30.	(8)

Competishun The Power of Real Gurus	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020				
	www.competishun.com	4			
	Mob. 8888-0000-21, 7410900901	-4			