PHYSICS

JEE-MAIN EXAM APRIL, 2024

Date: - 04-04-2024 (SHIFT-2)

PHYSICS

SECTION-A

1. The translational degrees of freedom (f_t) and rotational degrees of freedom (f) of CH₄ molecule are :

(1) $f_t = 2$ and $f_r = 2$ (2) $f_t = 3$ and $f_r = 3$ (3) $f_t = 3$ and $f_r = 2$ (4) $f_t = 2$ and $f_r = 3$

2. A cyclist starts from the point P of a circular ground of radius 2km and travels along its circumference to the point S. The displacement of a cyclist is :

3. The magnetic moment of a bar magnet is 0.5Am^2 . It is suspended in a uniform magnetic field of $8 \times 10^{-2} \text{ T}$. The work done in rotating it from its most stable to most unstable position is :

(1)
$$16 \times 10^{-2}$$
 J (2) 8×10^{-2} J (3) 4×10^{-2} J (4) Zero

4. Which of the diode circuit shows correct biasing used for the measurement of dynamic resistance of p-n junction diode :

10. Given below are two statements :

Statement I : The contact angle between a solid and a liquid is a property of the material of the solid and liquid as well.

Statement II: The rise of a liquid in a capillary tube does not depend on the inner radius of the tube.

In the light of the above statements, choose the correct answer from the options given below :

- (1) Both Statement I and Statement II are false
- (2) Statement I is false but Statement II is true.
- (3) Statement I is true but Statement II is false.
- (4) Both Statement I and Statement II are true.
- A body of mkg slides from rest along the curve of vertical circle from point A to B in friction less path.
 The velocity of the body at B is :

(given, $R = 14 \text{ m}, g = 10 \text{ m} / \text{s}^2$ and $\sqrt{2} = 1.4$)

12. An electric bulb rated 50W – 200V is connected across a 100 V supply. The power dissipation of the bulb is :

(1) 12.5 W (2) 25 W (3) 50 W (4) 100 W

13. A 2kg brick begins to slide over a surface which is inclined at an angle of 45° with respect to horizontal axis. The co-efficient of static friction between their surfaces is :

(1) 1 (2)
$$\frac{1}{\sqrt{3}}$$
 (3) 0.5 (4) 1.7

14. In simple harmonic motion, the total mechanical energy of given system is E. If mass of oscillating particle P is doubled then the new energy of the system for same amplitude is :

15. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.Assertion A : Number of photons increases with increase in frequency of light.

Reason R : Maximum kinetic energy of emitted electrons increases with the frequency of incident radiation.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both A and R are correct and R is NOT the correct explanation of A.
- (2) A is correct but R is not correct.
- (3) Both A and R are correct and R is the correct explanation of A.
- (4) A is not correct but R is correct.
- **16.** According to Bohr's theory, the moment of momentum of an electron revolving in 4th orbit of hydrogen atom is :

(1)
$$8\frac{h}{\pi}$$
 (2) $\frac{h}{\pi}$ (3) $2\frac{h}{\pi}$ (4) $\frac{h}{2\pi}$

17. A sample of gas at temperature T is adiabatically expanded to double its volume. Adiabatic constant for the gas is $\gamma = 3/2$. The work done by the gas in the process is : ($\mu = 1$ mole)

(1) $RT[\sqrt{2}-2]$ (2) $RT[1-2\sqrt{2}]$ (3) $RT[2\sqrt{2}-1]$ (4) $RT[2-\sqrt{2}]$

18. A charge q is placed at the center of one of the surface of a cube. The flux linked with the cube is :-

(1)
$$\frac{q}{4\epsilon_0}$$
 (2) $\frac{q}{2\epsilon_0}$ (3) $\frac{q}{8\epsilon_0}$ (4) Zero

19. Applying the principle of homogeneity of dimensions, determine which one is correct. where T is time period, G is gravitational constant, M is mass, r is radius of orbit.

(1)
$$T^2 = \frac{4\pi^2 r}{GM^2}$$
 (2) $T^2 = 4\pi^2 r^3$ (3) $T^2 = \frac{4\pi^2 r^3}{GM}$ (4) $T^2 = \frac{4\pi^2 r^2}{GM}$

20. A 90 kg body placed at 2R distance from surface of earth experiences gravitational pull of :

(R = Radius of earth, $g = 10 \text{ ms}^{-2}$)

(1) 300 N (2) 225 N

(3) 120 N

(4) 100 N

SECTION-B

21. The displacement of a particle executing SHM is given by $x = 10\sin\left(\omega t + \frac{\pi}{3}\right)m$. The time period of

motion is 3.14s. The velocity of the particle at t = 0 is _____ m /s .

- 22. A bus moving along a straight highway with speed of 72 km/h is brought to halt within 4s after applying the brakes. The distance travelled by the bus during this time (Assume the retardation is uniform) is _____m.
- 23. A parallel plate capacitor of capacitance 12.5pF is charged by a battery connected between its plates to potential difference of 12.0 V. The battery is now disconnected and a dielectric slab ($\varepsilon_r = 6$) is inserted between the plates. The change in its potential energy after inserting the dielectric slab is ____ × 10⁻¹² J.

competishun	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020				
	www.competishun.com	1			
	Mob. 8888-0000-21, 7410900901	-4			

- 24. In a system two particles of masses m₁ = 3kg and m₂ = 2kg are placed at certain distance from each other. The particle of mass m₁ is moved towards the center of mass of the system through a distance 2cm. In order to keep the center of mass of the system at the original position, the particle of mass m₂ should move towards the center of mass by the distance _____cm.
- **25.** The disintegration energy Q for the nuclear fission of ${}^{235}U \rightarrow {}^{140}Ce + {}^{94}Zr + n$ is _____MeV. Given atomic masses of

²³⁵U : 235.0439u;¹⁴⁰C e; 139.9054u,

 94 Zr: 93.9063u; n: 1.0086u, Value of $c^2 = 931$ MeV /u

- 26. A light ray is incident on a glass slab of thickness $4\sqrt{3}$ cm and refractive index $\sqrt{2}$. The angle of incidence is equal to the critical angle for the glass slab with air. The lateral displacement of ray after passing through glass slab is _____cm. (Given $\sin 15^\circ = 0.25$)
- 27. A rod of length 60cm rotates with a uniform angular velocity 20rad⁻¹ about its perpendicular bisector, in a uniform magnetic field 0.5T. The direction of magnetic field is parallel to the axis of rotation. The potential difference between the two ends of the rod is _____V.
- **28.** Two wires A and B are made up of the same material and have the same mass. Wire A has radius of 2.0mm and wire B has radius of 4.0mm. The resistance of wire B is 2Ω . The resistance of wire A is ______.
- **29.** Two parallel long current carrying wire separated by a distance 2r are shown in the figure. The ratio of magnetic field at A to the magnetic field produced at C is $\frac{x}{7}$. The value of x is _____.

30. Mercury is filled in a tube of radius 2cm up to a height of 30cm. The force exerted by mercury on the bottom of the tube is _____N.

(Given, atmospheric pressure $= 10^5 \text{ Nm}^{-2}$, density of mercury $= 1.36 \times 10^4 \text{ kg m}^{-3}$, $g = 10 \text{ ms}^{-2}$,

$$\pi = \frac{22}{7})$$

competi

NTA ANSWERS													
1.	(2)	2.	(2)	3.	(2)	4.	(2)	5.	(3)	6.	(2)	7.	(1)
8.	(2)	9.	(4)	10.	(3)	11.	(2)	12.	(1)	13.	(1)	14.	(2)
15.	(4)	16.	(3)	17.	(4)	18.	(2)	19.	(3)	20.	(4)	21.	(10)
22.	(40)	23.	(750)	24.	(3)	25.	(208)	26.	(2)	27.	(0)	28.	(32)
29.	(5)	30.	(177)										

	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020						
nun of Real Gurus	www.competishun.com	F					
of Real Golds	Mob. 8888-0000-21, 7410900901	-5					