JEE-MAIN EXAM APRIL, 2024

Date: - 04-04-2024 (SHIFT-1)

PHYSICS

SECTION-A

- 1. An electron is projected with uniform velocity along the axis inside a current carrying long solenoid. Then :
 - (1) the electron will be accelerated along the axis.
 - (2) the electron will continue to move with uniform velocity along the axis of the solenoid.
 - (3) the electron path will be circular about the axis.
 - (4) the electron will experience a force at 45° to the axis and execute a helical path.
- The electric field in an electromagnetic wave is given by $\vec{E} = \hat{i} 40 \cos \omega \left(t \frac{z}{c} \right) NC^{-1}$. The magnetic field 2.

induction of this wave is (in SI unit):

- (1) $\vec{B} = \hat{i} \frac{40}{c} \cos \omega \left(t \frac{z}{c} \right)$ (2) $\vec{B} = \hat{j} 40 \cos \omega \left(t - \frac{z}{c} \right)$ (4) $\vec{B} = \hat{j} \frac{40}{c} \cos\omega \left(t - \frac{z}{c}\right)$ (3) $\vec{B} = \hat{k} \frac{40}{c} \cos \omega \left(t - \frac{z}{c} \right)$
- 3. Which of the following nuclear fragments corresponding to nuclear fission between neutron $\binom{1}{n}$ and uranium isotope $\begin{pmatrix} 235\\ 92 \end{pmatrix}$ is correct:
 - (1) $_{56}^{144}$ Ba $+_{36}^{89}$ Kr $+ 4_0^1$ n (2) ${}^{140}_{56}Xe + {}^{94}_{39}Sr + {}^{31}_{0}n$ (3) ${}^{153}_{51}Sb + {}^{99}_{41}Nb + {}^{30}_{0}n$ (4) $^{144}_{56}$ Ba $+^{89}_{36}$ Kr $+ 3^{1}_{0}$ n
- 4. In an experiment to measure focal length (f) of convex lens, the least counts of the measuring scales for the position of object (u) and for the position of image (v) are Δu and Δv , respectively. The error in the measurement of the focal length of the convex lens will be :

(1)
$$\frac{\Delta u}{u} + \frac{\Delta v}{v}$$

(2) $f^2 \left[\frac{\Delta u}{u^2} + \frac{\Delta v}{v^2} \right]$
(3) $2f \left[\frac{\Delta u}{u} + \frac{\Delta v}{v} \right]$
(4) $f \left[\frac{\Delta u}{u} + \frac{\Delta v}{v} \right]$

Mob. 8888-0000-21, 7410900901

5. Given below are two statements :

Statement I: When speed of liquid is zero everywhere, pressure difference at any two points depends

on equation $P_1 - P_2 = \rho g (h_2 - h_1)$

Statement II : In ventury tube shown $2gh = v_1^2 - v_2^2$

In the light of the above statements, choose the most appropriate answer from the options given below.

- (1) Both Statement I and Statement II are correct.
- (2) Statement I is incorrect but Statement II is correct.
- (3) Both Statement I and Statement II are incorrect.
- (4) Statement I is correct but Statement II is incorrect.
- 6. The resistances of the platinum wire of a platinum resistance thermometer at the ice point and steam point are 8Ω and 10Ω respectively. After inserting in a hot bath of temperature 400°C, the resistance of platinum wire is :

(1)
$$2\Omega$$
 (2) 16Ω (3) 8Ω (4) 10Ω

7. A metal wire of uniform mass density having length L and mass M is bent to form a semicircular arc and a particle of mass m is placed at the centre of the arc. The gravitational force on the particle by the wire is:

(1)
$$\frac{G M m \pi}{2L^2}$$
 (2) 0 (3) $\frac{G m M \pi^2}{L^2}$ (4) $\frac{2G m M \pi}{L^2}$

- On celcius scale the temperature of body increases by 40°C. The increase in temperature on Fahrenheit scale is:
 - (1) 70°F (2) 68°F (3) 72°F (4) 75°F
- **9.** An effective power of a combination of 5 identical convex lenses which are kept in contact along the principal axis is 25D. Focal length of each of the convex lens is :
 - (1) 20 cm (2) 50 cm (3) 500 cm (4) 25 cm
- **10.** Which figure shows the correct variation of applied potential difference (V) with photoelectric current (I) at two different intensities of light ($I_1 < I_2$) of same wavelengths :

A wooden block, initially at rest on the ground, is pushed by a force which increases linearly with time t.Which of the following curve best describes acceleration of the block with time :

12. If a rubber ball falls from a height h and rebounds upto the height of h/2. The percentage loss of total energy of the initial system as well as velocity ball before it strikes the ground, respectively, are :

(1)
$$50\%, \sqrt{\frac{\text{gh}}{2}}$$
 (2) $50\%, \sqrt{\text{gh}}$ (3) $40\%, \sqrt{2\text{gh}}$ (4) $50\%, \sqrt{2\text{gh}}$

13. The equation of stationary wave is :

$$y = 2a\sin\left(\frac{2\pi nt}{\lambda}\right)\cos\left(\frac{2\pi x}{\lambda}\right)$$

Which of the following is NOT correct

- (1) The dimensions of nt is [L] (2) The dimensions of n is [LT⁻¹]
- (3) The dimensions of n/λ is [T] (4) The dimensions of x is [L]
- **14.** A body travels 102.5 m in n^{th} second and 115.0 m in $(n + 2)^{th}$ second. The acceleration is :

 (1) 9 m/s²
 (2) 6.25 m/s²
 (3) 12.5 m/s²
 (4) 5 m/s²
- **15.** To measure the internal resistance of a battery, potentiometer is used. For $R = 10\Omega$, the balance point is observed at $\ell = 500$ cm and for $R = 1\Omega$ the balance point is observed at $\ell = 400$ cm. The internal resistance of the battery is approximately :
 - (1) 0.2Ω (2) 0.4Ω (3) 0.1Ω (4) 0.3Ω
- 16. An infinitely long positively charged straight thread has a linear charge density λcm⁻¹. An electron revolves along a circular path having axis along the length of the wire. The graph that correctly represents the variation of the kinetic energy of electron as a function of radius of circular path from the wire is :

(

17. The value of net resistance of the network as shown in the given figure is :

18. P-T diagram of an ideal gas having three different densities ρ_1, ρ_2, ρ_3 , (in three different cases) is shown in the figure. Which of the following is correct :

1)
$$\rho_2 < \rho_3$$
 (2) $\rho_1 > \rho_2$ (3) $\rho_1 < \rho_2$ (4) $\rho_1 = \rho_2 = \rho_3$

19. The co-ordinates of a particle moving in x - y plane are given by :

x = 2 + 4t, $y = 3t + 8t^2$. The motion of the particle is :

(1) non-uniformly accelerated.

C. pure resistor.

- (2) uniformly accelerated having motion along a straight line.
- (3) uniform motion along a straight line.
- (4) uniformly accelerated having motion along a parabolic path.
- **20.** In an ac circuit, the instantaneous current is zero, when the instantaneous voltage is maximum. In this case, the source may be connected to :
 - A. pure inductor. B. pure capacitor.
 - D. combination of an inductor and capacitor.

Choose the correct answer from the options given below :

(1) A, B and C only (2) B, C and D only (3) A and B only (4) A, B and D only

SECTION-B

- 21. An infinite plane sheet of charge having uniform surface charge density $+\sigma_s C/m^2$ is placed on x y plane. Another infinitely long line charge having uniform linear charge density $+\lambda_e C/m$ is placed at z = 4m plane and parallel to y-axis. If the magnitude values $|\sigma_s| = 2|\lambda_e|$ then at point (0, 0, 2), the ratio of magnitudes of electric field values due to sheet charge to that of line charge is $\pi\sqrt{n}:1$. The value of n is
- 22. A hydrogen atom changes its state from n = 3 to n = 2. Due to recoil, the percentage change in the wave length of emitted light is approximately 1× 10⁻ⁿ. The value of n is _____.
 [Given Rhc = 13.6eV, hc = 1242eVnm, h = 6.6×10⁻³⁴ Js, mass of the hydrogen atom = 1.6×10⁻²⁷ kg]

23. The magnetic field existing in a region is given by $\vec{B} = 0.2(1+2x)\hat{k}T$. A square loop of edge 50 cm carrying 0.5 A current is placed in x – y plane with its edges parallel to the x – y axes, as shown in figure. The magnitude of the net magnetic force experienced by the loop is mN.

- 24. A alternating current at any instant is given by $i = \left[6 + \sqrt{56} \sin\left(100\pi t + \frac{\pi}{3}\right)\right]A$. The rms value of the current is A.
- **25.** Twelve wires each having resistance 2Ω are joined to form a cube. A battery of 6V emf is joined across point a and c. The voltage difference between e and f is V.

- **26.** A soap bubble is blown to a diameter of 7cm. 36960erg of work is done in blowing it further. If surface tension of soap solution is 40dyne/cm then the new radius is _____cm. Take $\left[\pi = \frac{22}{7}\right]$.
- 27. Two wavelengths λ_1 and λ_2 are used in Young's double slit experiment λ_1 = 450 nm and λ_2 = 650 nm. The minimum order of fringe produced by λ_2 which overlaps with the fringe produced by λ_1 is n. The value of n is____.
- 28. An elastic spring under tension of 3N has a length a. Its length is b under tension 2N. For its length (3a–2b), the value of tension will be N.
- **29.** Two forces \vec{F}_1 and \vec{F}_2 are acting on a body. One force has magnitude thrice that of the other force and the resultant of the two forces is equal to the force of larger magnitude. The angle between \vec{F}_1 and \vec{F}_2 is $\cos^{-1}\left(\frac{1}{n}\right)$. The value of |n| is
- **30.** A solid sphere and a hollow cylinder roll up without slipping on same inclined plane with same initial speed v. The sphere and the cylinder reaches upto maximum heights h_1 and h_2 , respectively, above

the initial level. The ratio $h_1: h_2$ is $\frac{n}{10}$. The value of n is_____.

NTA ANSWERS													
1.	(2)	2.	(4)	3.	(4)	4.	(2)	5.	(4)	6.	(2)	7.	(4)
8.	(3)	9.	(1)	10.	(3)	11.	(2)	12.	(4)	13.	(3)	14.	(2)
15.	(4)	16.	(2)	17.	(3)	18.	(2)	19.	(4)	20.	(4)	21.	(16)
22.	(7)	23.	(50)	24.	(8)	25.	(1)	26.	(7)	27.	(9)	28.	(5)
29.	(6)	30.	(7)										

OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020