JEE-MAIN EXAM APRIL, 2024

Date: - 05-04-2024 (SHIFT-2)

MATHEMATICS

SECTION-A

1.	Let $f: [-1,2] \rightarrow R$ be given by $f(x) = 2x^2 + x + [x^2] - [x]$, where [t] denotes the greatest integer less than					
	or equal to t. The number of points, where f is not continuous, is :					
	(1) 6	(2) 3	(3) 4	(4) 5		
2.	The differential equation	on of the family of circles	passing the origin and h	aving center at the line $y = x$ is :		
		$= (x^2 - y^2 + 2xy)dy$				
	(3) $(x^2 - y^2 + 2xy)dx$	$= (x^2 - y^2 - 2xy)dy$	(4) $(x^2 + y^2 - 2xy)dx$	$= (x^2 + y^2 + 2xy)dy$		
3.	Let $S_1 = \{z \in \mathcal{C} : z \le 5$	}, $S_2 = \left\{ z \in C : \operatorname{Im}\left(\frac{z+1-\sqrt{3}}{1-\sqrt{3}i}\right) \right\}$	$\left \frac{\overline{s}i}{2}\right \geq 0$ and $S_3 = \{z \in C:$	$\operatorname{Re}(z) \geq 0$. Then		
	$(1)\frac{125\pi}{6}$	$(2)\frac{125\pi}{24}$	$(3)\frac{125\pi}{4}$	(4) $\frac{125\pi}{12}$		
4.	The area enclosed bet	ween the curves $y = x x$	and $y = x - x $ is :			
	$(1)\frac{8}{3}$	$(2)\frac{2}{3}$	(3) 1	$(4)\frac{4}{3}$		
5.	60 words can be made	e using all the letters of t	he word BH <mark>BJO</mark> , with o <mark>r</mark>	without meaning. If these words		
	are written as in a dictionary, then the 50 th word is :					
	(1) OBBHJ	(2) HBBJO	(3) OB <mark>BJH</mark>	(4) ЈВВОН		
6.	Let $\vec{a} = 2\hat{\imath} + 5\hat{\jmath} - \hat{k}, \vec{b} =$	$=2\hat{\imath}-2\hat{\jmath}+2\hat{k}$ and \vec{c} be t	hree vectors such that ($\vec{c} + \hat{\imath} \times (\vec{a} + \vec{b} + \hat{\imath}) = \vec{a} \times (\vec{c} + \hat{\imath}) \cdot$		
	$\vec{a} \cdot \vec{c} = -29$, then $\vec{c} \cdot (-2\hat{i} + \hat{j} + \hat{k})$ is equal to :					
	(1) 10	(2) 5	(3) 15	(4) 12		
7.	Consider three vectors	s $\vec{a}, \vec{b}, \vec{c}$. Let $ \vec{a} = 2, \vec{b} =$	= 3 and $\vec{a} = \vec{b} \times \vec{c}$. If $\alpha \in$	$\left[0,\frac{\pi}{3}\right]$ is the angle between the		
	vectors \vec{b} and \vec{c} , then the	ectors \vec{b} and \vec{c} , then the minimum value of $27 \vec{c} - \vec{a} ^2$ is equal to :				
	(1) 110	(2) 105	(3) 124	(4) 121		
8.	Let $A(-1,1)$ and $B(2,3)$ be two points and P be a variable point above the line AB such that the area of					
	\triangle PAB is 10 . If the loce	If the locus of P is $ax + by = 15$, then $5a + 2b$ is :				
	$(1) - \frac{12}{5}$	$(2) - \frac{6}{5}$	(3) 4	(4) 6		
9.	Let (α, β, γ) be the poir	et (α, β, γ) be the point (8,5,7) in the line $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-2}{5}$. Then $\alpha + \beta + \gamma$ is equal to				
	(1) 16	(2) 18	(3) 14	(4) 20		
10.	If the constant term in	the expansion of $\left(\frac{\sqrt[5]{3}}{x} + \frac{2z}{\sqrt[3]{3}}\right)$	$\left(\frac{x}{5}\right)^{12}$, $x \neq 0$, is $\alpha \times 2^8 \times \sqrt[5]{v}$	$\overline{3}$, then 25 α is equal to :		
	(1) 639	(2) 724	(3) 693	(4) 742		

11.	Let f , g: $\mathbb{R} \to \mathbb{R}$ be define	ed as : $f(x) = x - 1 $ and	$d g(x) = \begin{cases} e^x, & x \ge 0\\ y + 1, & y < 0 \end{cases}$	Then the function $f(g(x))$ is		
	(1) neither one-one nor		(2) one-one but not or			
	(3) both one-one and or		(4) onto but not one-o			
12.						
	Let the circle $C_1: x^2 + y^2 - 2(x + y) + 1 = 0$ and C_2 be a circle having centre at $(-1,0)$ and radius 2. If the line of the common chord of C_1 and C_2 intersects the y-axis at the point P, then the square of the distance of					
	of P from the centre of (, q		
	(1) 2	(2) 1	(3) 6	(4) 4		
13.				ual number of elements such that		
	-			f such possible partitions of S is		
	equal to :					
	(1) 1680	(2) 1520	(3) 1710	(4) 1640		
14.	The values of m, n , for v	which the system of equa	ations			
	$\mathbf{x} + \mathbf{y} + \mathbf{z} = 4,$					
	2x + 5y + 5z = 17,					
	x + 2y + mz = n					
	has infinitely many solu	tions, satisfy the equatio	n :			
	(1) $m^2 + n^2 - m - n = 46$ (2) $m^2 + n^2 + m + n = 64$					
	(3) $m^2 + n^2 + mn = 68$ (4) $m^2 + n^2 - mn = 39$					
15.	The coefficients <i>a</i> , <i>b</i> , <i>c</i>	in the quadratic equation	$ax^2 + bx + c = 0 \text{ are}$	from the set $\{1,2,3,4,5,6\}$. If the		
	probability of this <mark>equat</mark>	ion having one real root	bigger than th <mark>e</mark> other is <mark>r</mark>	<mark>p, then 2</mark> 16 p equals :		
	(1) 57	(2) 38	(3) 19	(4) 76		
16.	Let ABCD and AEFG be	squares of side 4 and 2	units, respectively. The	point E is on the line segment AB		
				passing through the point F and		
	touching the line segments BC and CD satisfies : (1) $r = 1$ (2) $r^2 - 8r + 8 = 0$ (3) $2r^2 - 4r + 1 = 0$ (4) $2r^2 - 8r + 7 = 0$					
	(1) $r = 1$		()			
17.	Let $\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$, $m, n > 0$. If $\int_0^1 (1-x^{10})^{20} dx = a \times \beta(b,c)$, then $100(a+b+x)$ equals					
	(1) 1021	(2) 1120	(3) 2012	(4) 2120		
18.	Let $\alpha\beta \neq 0$ and $A = \begin{bmatrix} \beta \\ a \\ - \end{bmatrix}$	$\begin{bmatrix} \alpha & 3 \\ \alpha & \beta \\ \beta & \alpha & 2\alpha \end{bmatrix}$. If $B = \begin{bmatrix} 3\alpha \\ -\alpha \\ -2\alpha \end{bmatrix}$	$\begin{bmatrix} -9 & 3\alpha \\ 7 & -2\alpha \\ 5 & -2\beta \end{bmatrix}$ is the matrix	ix of cofactors of the elements of		
	A, then det(AB) is equal to :					
	(1) 343	(2) 125	(3) 64	(4) 216		
19.	If $y(\theta) = \frac{2\cos\theta + \cos 2}{\cos 3\theta + 4\cos 2\theta + 5\omega}$	$\frac{\theta}{\cos \theta + 2}$, then at $\theta = \frac{\pi}{2}$, y''	+y' + y is equal to:			
	$(1)\frac{3}{2}$	(2) 1	$(3)\frac{1}{2}$	(4) 2		
20.	-		2			
20.		The of K, for which 4 T	$\frac{1}{2}, \frac{1}{2}, \frac{1}{10} + \frac{1}{10}$ are u	nree consecutive terms of an		
	A.P. is equal to :	(2) A	(3) 8	(1) 16		
	(1) 10	(2) 4	(3) 8	(4) 16		

MATHEMATICS

SECTION-B

21. Let the mean and the standard deviation of the probability distribution

Х	α	1	0	-3
P(X)	$\frac{1}{3}$	K	$\frac{1}{6}$	$\frac{1}{4}$

be μ and σ , respectively. If $\sigma - \mu = 2$, then $\sigma + \mu$ is equal to _____.

- **22.** Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} + \frac{2x}{(1+x^2)^2}y = xe^{\frac{1}{(1+x^2)}}$; y(0) = 0. Then the area enclosed by the curve $f(x) = y(x)e^{-\frac{1}{(1+x^2)}}$ and the line y x = 4 is _____.
- **23.** The number of solutions of $\sin^2 x + (2 + 2x x^2)\sin x 3(x 1)^2 = 0$, where $-\pi \le x \le \pi$, is _____.
- 24. Let the point $(-1, \alpha, \beta)$ lie on the line of the shortest distance between the lines $\frac{x+2}{-3} = \frac{y-2}{4} = \frac{z-5}{2}$ and $\frac{x+2}{-1} = \frac{y+6}{2} = \frac{z-1}{0}$. Then $(\alpha \beta)^2$ is equal to _____.
- 25. If $1 + \frac{\sqrt{3} \sqrt{2}}{2\sqrt{3}} + \frac{5 2\sqrt{6}}{18} + \frac{9\sqrt{3} 11\sqrt{2}}{36\sqrt{3}} + \frac{49 20\sqrt{6}}{180} + \cdots$ upto $\infty = 2\left(\sqrt{\frac{b}{a}} + 1\right)\log_e\left(\frac{a}{b}\right)$, where a and b are integers with $\gcd(a, b) = 1$, then 11a + 18b is equal to _____.
- 26. Let a > 0 be a root of the equation $2x^2 + x 2 = 0$. If $\lim_{x \to \frac{1}{a}} \frac{16(1 \cos(2+x-2x^2))}{(1-ax^2)} = \alpha + \beta\sqrt{17}$, where $\alpha, \beta \in Z$ then $\alpha + \beta$ is equal to _____.

27. If
$$f(t) = \int_0^{\pi} \frac{2x dx}{1 - \cos^2 \sin^2 x}, 0 < t < \pi$$
, then the value of $\int_0^{\frac{\pi}{2}} \frac{\pi^2 dt}{f(t)}$ equals _____

- **28.** Let the maximum and minimum values of $(\sqrt{8x x^2 12} 4)^2 + (x 7)^2$, $x \in R$ be *M* and *m* respectively. Then M² - m² is equal to _____.
- **29.** Let a line perpendicular to the line 2x y = 10 touch the parabola $y^2 = 4(x 9)$ at the point *P*. The distance of the point P from the centre of the circle $x^2 + y^2 14x 8y + 56 = 0$ is _____.
- **30.** The number of real solutions of the equation x|x + 5| + 2|x + 7| 2 = 0 is _____.

NTA ANSWER									
1.	(3)	2.	(3)	3.	(4)	4.	(4)	5.	(3)
6.	(2)	7.	(3)	8.	(1)	9.	(3)	10.	(3)
11.	(1)	12.	(1)	13.	(1)	14.	(4)	15.	(2)
16.	(2)	17.	(4)	18.	(4)	19.	(4)	20.	(1)
21.	(5)	22.	(18)	23.	(2)	24.	(25)	25.	(76)
26.	(170)	27.	(1)	28.	(1600)	29.	(10)	30.	(3)

Compotishun	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020			
competishun The Power of Real Gurus	www.competishun.com	2		
	Mob. 8888-0000-21, 7410900901	-3		