JEE-MAIN EXAM APRIL, 2024

Date: - 05-04-2024 (SHIFT-1)

MATHEMATICS

SECTION-A

1.	Let d be the distance of the point of intersection of the lines $\frac{x+6}{3} = \frac{y}{2} = \frac{z+1}{1}$ and $\frac{x-7}{4} = \frac{y-9}{3} = \frac{z-4}{2}$ from the						
	point (7,8,9). Then $d^2 + d^2$	nt (7,8,9). Then $d^2 + 6$ is equal to :					
	(1) 72	(2) 69	(3) 75	(4) 78			
2.	Let a rectangle ABCD of	sides 2 and 4 be inscrib	bed in another rectangle	PQRS such that the vertices of			
	the rectangle $ABCD$ lie on the sides of the rectangle PQRS. Let a and b be the sides of the rectangle PQRS						
	when its area is maximum. Then $(a + b)^2$ is equal to :						
	(1) 72	(2) 60	(3) 80	(4) 64			
3.	Let two straight lines dra	Let two straight lines drawn from the origin 0 intersect the line $3x + 4y = 12$ at the points P and Q					
	that \triangle OPQ is an isosceles triangle and $\angle POQ = 90^{\circ}$. If $l = OP^2 + PQ^2 + QO^2$, then the greatest integer less						
	than or equal to <i>l</i> is :						
	(1) 44	(2) 48	(3) 46	(4) 42			
4.	If $y = y(x)$ is the solution	n of the differential equat	$\operatorname{ion} \frac{dy}{dx} + 2y = \sin(2x), y(x)$	$0) = \frac{3}{4}$, then $y\left(\frac{\pi}{8}\right)$ is equal to :			
	(1) $e^{-\pi/8}$	(2) $e^{-\pi/4}$	(3) $e^{\pi/4}$	(4) $e^{\pi/8}$			
5.	For the function $f(x) = \sin x + 3x - \frac{2}{\pi}(x^2 + x)$, where $x \in [0, \frac{\pi}{2}]$, consider the following two statements :						
	(I) f is increasing in $\left(0, \frac{\pi}{2}\right)$.						
	(II) f' is decreasing in $\left(0, \frac{\pi}{2}\right)$.						
	Between the above two	statements,					
	(1) only (I) is true. (2) only (II) is true.						
	(3) neither (I) nor (II) is tr	ue.	(4) both (I) and (II) are true.				
6.	If the system of equation	IS					
	$11x + y + \lambda z = -5$						
	2x + 3y + 5z = 3						
	$8x - 19y - 39z = \mu$						
	has infinitely many soluti	ions, then $\lambda^4-\mu$ is equa	l to :				
	(1) 49	(2) 45	(3) 47	(4) 51			
7.	Let $A = \{1,3,7,9,11\}$ and	B = {2,4,5,7,8,10,12}. Th	en the total number of or	ne-one maps $f: A \rightarrow B$, such that			
	f(1) + f(3) = 14, is :						
	(1) 180	(2) 120	(3) 480	(4) 240			

OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 www.competishun.com Mob. 8888-0000-21, 7410900901

8.	If the function $f(x) = \frac{\sin 3x + \alpha \sin x - \beta \cos 3x}{x^3}$, $x \in R$, is continuous at $x = 0$, then $f(0)$ is equal to :						
	(1) 2	(2) -2	(3) 4	(4) -4			
9.	The integral $\int_0^{\frac{\pi}{4}} \frac{136\sin x}{3\sin x + 5\cos x} dx$ is equal to :						
	(1) $3\pi - 50\log_e 2 + 20\log_e 5$		(2) $3\pi - 25\log_e 2 + 10\log_e 5$				
	(3) $3\pi - 10\log_{e}(2\sqrt{2}) + 10\log_{e} 5$		(4) $3\pi - 30\log_e 2 + 20\log_e 5$				
10.	The coefficients a, b, c in the quadratic equation $ax^2 + bx + c = 0$ are chosen from the set {1,2,3,4,5,6,7,						
	The probability of this equation having repeated roots is :						
	$(1)\frac{3}{256}$	$(2)\frac{1}{128}$	$(3)\frac{1}{64}$	$(4)\frac{3}{128}$			
11.	Let A and B be t	wo square matrices	of order 3 such tha	A = 3 and $ B = 2$. Then			
	$ A^{T}A(adj(2 A))^{-1}(adj(4 A)) ^{-1}$	B))(adj(AB)) ⁻¹ AA ^T is ed	qual to :				
	(1) 64	(2) 81	(3) 32	(4) 108			
12.	Let a circle C of radius	1 and closer to the origin	be such that the lines pa	ssing through the point (3,2) and			
	parallel to the coordina	te axes touch it. Then the	e shortest distance of the	circle C from the point (5,5) is :			
	(1) 2√ <u>2</u>	(2) 5	(3) 4√2	(4) 4			
13.	Let the line $2x + 3y - k$	k = 0, k > 0, intersect the	x-axis and y-axis at the p	oints A and B, respectively. If the			
	equation of the circle h	aving the line segment A	AB as a diameter is x^2 +	$y^2 - 3x - 2y = 0$ and the length			
	of the latus rectum of the ellipse $x^2 + 9y^2 = k^2$ is $\frac{m}{n}$, where m and n are coprime, then $2m + n$ is equal to						
	(1) 10	(2) 11	(3) 13	<mark>(4) 1</mark> 2			
14.	Consider the following two statements :						
	Statement I : For any two non-zero complex numbers $z_1, z_2(z_1 + z_2) \left \frac{z_1}{ z_1 } + \frac{z_2}{ z_2 } \right \le 2(z_1 + z_2)$ and						
	Statement II : If x, y, z are three distinct complex numbers and a, b, c are three positive real numbers						
	such that $\frac{a}{ y-z } = \frac{b}{ z-x } = \frac{c}{ x-y }$, then $\frac{a^2}{y-z} + \frac{b^2}{z-x} + \frac{c^2}{x-y} = 1$.						
	Between the above two statements,						
	(1) both Statement I an	d Statement II are incorr	ect.				
	(2) Statement I is incom	rect but Statement II is co	orrect.				
	(3) Statement I is corre	ct but Statement II is inco	prrect.				
	(4) both Statement I an	d Statement II are correc	xt.				
15.	Suppose $\theta \in \left[0, \frac{\pi}{4}\right]$ is a	solution of $4\cos\theta - 3\sin\theta$	$\theta = 1.$				
	Then $\cos \theta$ is equal to :						
	$(1)\frac{4}{(3\sqrt{6}-2)}$	$(2) \frac{6-\sqrt{6}}{(3\sqrt{6}-2)}$	(3) $\frac{6+\sqrt{6}}{(3\sqrt{6}+2)}$	(4) $\frac{4}{(3\sqrt{6}+2)}$			
16.	If $\frac{1}{\sqrt{1}+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \dots + \frac{1}{\sqrt{2}}$	$\frac{1}{\overline{99}+\sqrt{100}} = m \text{ and } \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3}$	$+ \dots + \frac{1}{99 \cdot 100} = n$, then the	point (m, n) lies on the line			
	(1) $11(x-1) - 100(y - 1)$	(-2) = 0	(2) $11(x-2) - 100(y)$	(-1) = 0			
	(3) $11(x-1) - 100y =$	0	(4) $11x - 100y = 0$				

OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 www.competishun.com Mob. 8888.0000.21 7410900901 -2

17.	Let $f(x) = x^5 + 2x^3 + 3x + 1$, $x \in R$, and $g(x)$ be a function such that $g(f(x)) = x$ for all $x \in R$. Then $\frac{g(7)}{g'(7)}$						
	is equal to :						
	(1) 7	(2) 42	(3) 1	(4) 14			
18.	lf A(1, −1,2), B(5,7,	If A(1, -1,2), B(5,7, -6), C(3,4, -10) and $D(-1, -4, -2)$ are the vertices of a quadrilateral ABCD, then its					
	area is :						
	(1) 12√ <u>29</u>	(2) 24√29	(3) 24√7	(4) 48√7			
19.	The value of $\int_{-\pi}^{\pi} \frac{2\pi}{2\pi}$	$rac{y(1+\sin y)}{1+\cos^2 y}dy$ is :					
	(1) π^2	(2) $\frac{\pi^2}{2}$	$(3)\frac{\pi}{2}$	(4) $2\pi^2$			
20.	If the line $\frac{2-x}{3} = \frac{3y-2}{4\lambda+1} = 4 - z$ makes a right angle with the line $\frac{x+3}{3\mu} = \frac{1-2y}{6} = \frac{5-z}{7}$, then $4\lambda + 9\mu$ is equal to :						
	(1) 13	(2) 4	(3) 5	(4) 6			

SECTION-B

- **21.** From a lot of 10 items, which include 3 defective items, a sample of 5 items is drawn at random. Let the random variable X denote the number of defective items in the sample. If the variance of X is σ^2 , then $96\sigma^2$ is equal to
- 22. If the constant term in the expansion of $(1 + 2x 3x^3) \left(\frac{3}{2}x^2 \frac{1}{3x}\right)^9$ is p, then 108p is equal to
- **23.** The area of the region enclosed by the parabolas $y = x^2 5x$ and $y = 7x x^2$ is
- 24. The number of ways of getting a sum 16 on throwing a dice four times is
- **25.** If $S = \{a \in R: |2a 1| = 3[a] + 2\{a\}\}$, where [t] denotes the greatest integer less than or equal to t and $\{t\}$ represents the fractional part of t, then $72\sum_{a\in S} a$ is equal to
- **26.** Let f be a differentiable function in the interval $(0, \infty)$ such that f(1) = 1 and $\lim_{t \to x} \frac{t^2 f(x) x^2 f(t)}{t x} = 1$ for each x > 0. Then 2f(2) + 3f(3) is equal to
- 27. Let $a_1, a_2, a_3, ...$ be in an arithmetic progression of positive terms. Let $A_k = a_1^2 - a_2^2 + a_3^2 - a_4^2 + \dots + a_{2k-1}^2 - a_{2k}^2$. If $A_3 = -153$, $A_5 = -435$ and $a_1^2 + a_2^2 + a_3^2 = 66$, then $a_{17} - A_7$ is equal to
- **28.** Let $\vec{a} = \hat{i} 3\hat{j} + 7\hat{k}$, $\vec{b} = 2\hat{i} \hat{j} + \hat{k}$ and \vec{c} be a vector such that $(\vec{a} + 2\vec{b}) \times \vec{c} = 3(\vec{c} \times \vec{a})$. If $\vec{a} \cdot \vec{c} = 130$, then $\vec{b} \cdot \vec{c}$ is equal to
- **29.** The number of distinct real roots of the equation |x||x+2|-5|x+1|-1=0 is
- **30.** Suppose *AB* is a focal chord of the parabola $y^2 = 12x$ of length *l* and slope $m < \sqrt{3}$. If the distance of the chord AB from the origin is d, then *l* d² is equal to

OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 www.competishun.com Mob. 8888-0000-21, 7410900901

NTA ANSWER									
1.	(3)	2.	(1)	3.	(3)	4.	(2)	5.	(4)
6.	(3)	7.	(4)	8.	(4)	9.	(1)	10.	(3)
11.	(1)	12.	(4)	13.	(2)	14.	(3)	15.	(1)
16.	(4)	17.	(4)	18.	(1)	19.	(1)	20.	(4)
21.	(56)	22.	(54)	23.	(198)	24.	(125)	25.	(18)
26.	(24)	27.	(910)	28.	(30)	29.	(3)	30.	(108)

OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 www.competishun.com

Mob. 8888-0000-21, 7410900901