JEE-MAIN EXAM APRIL, 2024

Date: - 06-04-2024 (SHIFT-2)

MATHEMATICS

SECTION-A

- Let ABC be an equilateral triangle. A new triangle is formed by joining the middle points of all sides of the 1. triangle ABC and the same process is repeated infinitely many times. If P is the sum of perimeters and Q is be the sum of areas of all the triangles formed in this process, then: (1) $P^2 = 36\sqrt{3}Q$ (2) $P^2 = 6\sqrt{3}0$ (3) $P = 36\sqrt{3}Q^2$ (4) $P^2 = 72\sqrt{3}Q$ 2. Let A = {1,2,3,4,5}. Let R be a relation on A defined by x Ry if and only if $4x \le 5y$. Let m be the number of elements in R and n be the minimum number of elements from $A \times A$ that are required to be added to R to make it a symmetric relation. Then m + n is equal to: (4) 26 (1) 24(2) 23 (3) 25 3. If three letters can be posted to any one of the 5 different addresses, then the probability that the three letters are posted to exactly two addresses is: $(1)\frac{12}{25}$ $(2)\frac{18}{25}$ $(3)\frac{4}{25}$ $(4) \frac{6}{25}$ Suppose the solution of the differential equation $\frac{dy}{dx} = \frac{(2+\alpha)x - \beta y + 2}{\beta x - 2\alpha y - (\beta y - 4\alpha)}$, represents a circle passing through 4. origin. Then the radius of this circle is : $(3)\frac{\sqrt{17}}{2}$ $(1)\sqrt{17}$ $(2)\frac{1}{2}$ (4) 2 If the locus of the point, whose distances from the point (2,1) and (1,3) are in the ratio 5:4, is $ax^2 + by^2 + by^2$ 5. cxy + dx + ey + 170 = 0, then the value of $a^2 + 2b + 3c + 4d + e$ is equal to: (1)5(3) 37 (4) 437 $\lim_{n \to \infty} \frac{(1^2 - 1)(n - 1) + (2^2 - 2)(n - 2) + \dots + ((n - 1)^2 - (n - 1)) \cdot 1}{(1^3 + 2^3 + \dots + n^3) - (1^2 + 2^2 + \dots + n^2)}$ is equal to: 6. $(2)\frac{1}{2}$ $(3)\frac{3}{4}$ $(1)\frac{2}{2}$ $(4)\frac{1}{2}$ Let $0 \le r \le n$. If ${}^{n+1}C_{r+1}$: ${}^{n}C_{r}$: ${}^{n-1}C_{r-1} = 55:35:21$, then 2n + 5r is equal to: 7. (1) 60(2) 62 (3)50(4) 55 A software company sets up m number of computer systems to finish an assignment in 17 days. If 4 8. computer systems crashed on the start of the second day, 4 more computer systems crashed on the start of the third day and so on, then it took 8 more days to finish the assignment. The value of m is equal to :
 - (1) 125 (2) 150 (3) 180 (4) 160

OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle,			
10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020			
www.competishun.com	4		
Mob. 8888-0000-21, 7410900901			

9.	If z_1, z_2 are two distinct complex number such that $\left \frac{z_1 - 2z_2}{\frac{1}{2} - z_1 \overline{z}_2}\right = 2$, then					
	(1) either z_1 lies on a circle of radius 1 or z_2 lies on a circle of radius $\frac{1}{2}$					
	(2) either z_1 lies on a circle of radius $\frac{1}{2}$ or z_2 lies on a circle of radius 1.					
	(3) z_1 lies on a circle of	radius $\frac{1}{2}$ and z_2 lies on a	circle of radius 1.			
	(4) both z_1 and z_2 lie on	the same circle.				
10.	If the function $f(x) = \left(\frac{1}{x}\right)^{1}$	$\left(\frac{1}{x}\right)^{2x}$; $x > 0$ attains the matrix	eximum value at $x = \frac{1}{2}$ the	en :		
	(1) $e^{\pi} < \pi^{e}$	(2) $e^{2\pi} < (2\pi)^e$	(3) $e^{\pi} > \pi^{e}$	(4) $(2e)^{\pi} > \pi^{(2e)}$		
11.	Let $\vec{a} = 6\hat{\imath} + \hat{\jmath} - \hat{k}$ and \bar{k}	$\vec{b} = \hat{\imath} + \hat{\jmath}$. If \vec{c} is a is vecto	r such that $ \vec{c} ≥ 6, \vec{a}. \vec{c} =$	$6 \vec{c} , \vec{c} - \vec{a} = 2\sqrt{2}$ and the angle		
	between $\vec{a} \times \vec{b}$ and \vec{c} is	60°, then $ (\vec{a} \times \vec{b}) \times \vec{c} $ is	equal to:			
	$(1)\frac{9}{2}(6-\sqrt{6})$	$(2)\frac{3}{2}\sqrt{3}$	$(3)\frac{3}{2}\sqrt{6}$	$(4)\frac{9}{2}(6+\sqrt{6})$		
12.	If all the words with or v	vithout meaning made us	ing all the letters of the v	vord "NAGPUR" are arranged as		
	in a dictionary, then the	word at 315 th position ir	this arrangement is :			
	(1) NRAGUP	(2) NRAGPU	(3) NRAPGU	(4) NRAPUG		
13.	Suppose for a differenti	able function $h, h(0) = 0$,	h(1) = 1 and $h'(0) = h'$	(1) = 2. If $g(x) = h(e^x)e^{h(x)}$, then		
	g'(0) is equal to:					
	(1) 5	(2) 3	(3) 8	(4) 4		
14.	Let $P(\alpha, \beta, \gamma)$ be the imaginary set of the set of th	age of the point $Q(3, -3, 1)$	1) in the line $\frac{x-0}{1} = \frac{y-3}{1} =$	$\frac{2}{-1}$ and <i>R</i> be the point (2,5, -1).		
	If the area of the triangle PQR is λ and $\lambda^2 = 14$ K, then K is equal to:					
	(1) 36	(2) 72	(3) 18	(4) 81		
15.	If P(6,1) be the orthocentre of the triangle whose vertices are $A(5, -2)$, $B(8,3)$ and $C(h, k)$, then the point of					
	lies on the circle.					
	$(1) x^2 + y^2 - 65 = 0$	$(2) x^2 + y^2 - 74 = 0$	$(3) x^2 + y^2 - 61 = 0$	$(4) x^2 + y^2 - 52 = 0$		
16.	Let $f(x) = \frac{1}{7 - \sin 5x}$ be a	function defined on <i>R</i> .				
	Then the range of the fu	unction $f(x)$ is equal to:				
	$(1)\left[\frac{1}{8},\frac{1}{5}\right]$	(2) $\left[\frac{1}{7}, \frac{1}{6}\right]$	$(3)\left[\frac{1}{7},\frac{1}{5}\right]$	(4) $\left[\frac{1}{8}, \frac{1}{6}\right]$		
17.	Let $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$, $\vec{b} = (0)$	$(\vec{a} \times (\hat{i} + \hat{j})) \times \hat{i}) \times \hat{i}.$				
	Then the square of the	projection of \vec{a} on \vec{b} is :				
	$(1)\frac{1}{5}$	(2) 2	$(3)\frac{1}{3}$	$(4)\frac{2}{3}$		
18.	If the area of the region	I				
	$\left\{ (x, y): \frac{a}{x^2} \le y \le \frac{1}{x}, 1 \le x \le 2, 0 < a < 1 \right\}$ is					
	$(\log_{e} 2) - \frac{1}{2}$ then the value of 7a - 3 is equal to:					
	(1) 2	(2) 0	(3) -1	(4) 1		

19.	If $\int \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx = \frac{1}{12} \tan^{-1}(3\tan x) + \text{constant}$, then the maximum value of $a\sin x + b\cos x$					
	$(1)\sqrt{40}$	(2) $\sqrt{39}$	(3) $\sqrt{42}$	(4) √41		
20.	20. If <i>A</i> is a square matrix of order 3 such that $det(A) = 3$ and $det\left(adj\left(-4adj\left(-3adj\left(3adj((2 A)^{-1})\right)\right)\right) = 2^m 3^n$, then $m+12n$ is equal to:					
	(1) 3	(2) 2	(3) 4	(4) 6		

SECTION-B

- **21.** Let [t] denote the greatest integer less than or equal to t. Let $f: [0, \infty) \to R$ be a function defined by $f(x) = \left[\frac{x}{2} + 3\right] \left[\sqrt{x}\right]$. Let *S* be the set of all points in the interval [0,8] at which f is not continuous. Then $\sum_{a \in S} a$ is equal to
- 22. The length of the latus rectum and directrices of a hyperbola with eccentricity e are 9 and $x = \pm \frac{4}{\sqrt{3}}$, respectively. Let the line $y \sqrt{3}x + \sqrt{3} = 0$ touch this hyperbola at (x_0, y_0) . If m is the product of the focal distances of the point (x_0, y_0) , then $4e^2 + m$ is equal to
- **23.** If $S(x) = (1 + x) + 2(1 + x)^2 + 3(1 + x)^3 + \dots + 60(1 + x)^{60}, x \neq 0$, and $(60)^2 S(60) = a(b)^b + b$, where $a, b \in N$, then (a + b) equal to
- 24. Let [t] denote the largest integer less than or equal to t. If

$$\int_{0}^{3} \left([x^{2}] + \left[\frac{x^{2}}{2} \right] \right) dx = a + b\sqrt{2} - \sqrt{3} - \sqrt{5} + c\sqrt{6} - \sqrt{7},$$

where a, b, $c \in z$, then a + b + c is equal to

- **25.** From a lot of 12 items containing 3 defectives, a sample of 5 items is drawn at random. Let the random variable X denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If variance of X is $\frac{m}{n}$, where gcd(m, n) = 1, then n m is equal to
- **26.** In a triangle ABC, BC = 7, AC = 8, AB = $\alpha \in \mathbb{N}$ and $\cos A = \frac{2}{3}$. If $49\cos(3C) + 42 = \frac{m}{n}$, where gcd(m, n) = 1, then m + n is equal to
- 27. If the shortest distance between the lines $\frac{x-\lambda}{3} = \frac{y-2}{-1} = \frac{z-1}{1}$ and $\frac{x+2}{-3} = \frac{y+5}{2} = \frac{z-4}{4}$ is $\frac{44}{\sqrt{30}}$, then the largest possible value of $|\lambda|$ is equal to
- **28.** Let α , β be roots of $x^2 + \sqrt{2}x 8 = 0$.

If $U_n = \alpha^n + \beta^n$, then $\frac{U_{10} + \sqrt{12}U_9}{2U_8}$ is equal to

29. If the system of equations

$$2x + 7y + \lambda z = 3$$
$$3x + 2y + 5z = 4$$
$$x + \mu y + 32z = -1$$

has infinitely many solutions, then $(\lambda - \mu)$ is equal to

30. If the solution y(x) of the given differential equation $(e^y + 1)\cos x dx + e^y \sin x dy = 0$ passes through the point $(\frac{\pi}{2}, 0)$, then the value of $e^{y(\frac{\pi}{6})}$ is equal to

NTA ANSWER									
1.	(1)	2.	(3)	3.	(1)	4.	(3)	5.	(3)
6.	(2)	7.	(3)	8.	(2)	9.	(1)	10.	(3)
11.	(4)	12.	(3)	13.	(4)	14.	(4)	15.	(1)
16.	(4)	17.	(2)	18.	(3)	19.	(1)	20.	(3)
21.	(17)	22.	(61)	23.	(3660)	24.	(23)	25.	(71)
26.	(39)	27.	(43)	28.	(4)	29.	(38)	30.	(3)

 OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle,

 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

 www.competishun.com

 Mob. 8888-0000-21, 7410900901