JEE-MAIN EXAM APRIL, 2024

Date: - 06-04-2024 (SHIFT-1)

MATHEMATICS

SECTION-A

1.	If $f(x) = \begin{cases} x^3 \sin\left(\frac{1}{x}\right), \\ 0, \end{cases}$	$x \neq 0$, then $x = 0$		
	(1) $f''(0) = 1$	(2) f'' $\left(\frac{2}{\pi}\right) = \frac{24 - \pi^2}{2\pi}$	(3) $f''\left(\frac{2}{\pi}\right) = \frac{12 - \pi^2}{2\pi}$	(4) f''(0) = 0
2.	If A(3,1,-1), B $\left(\frac{5}{3},\frac{7}{3},\frac{1}{3}\right)$), C(2,2,1) and D $\left(\frac{10}{3}, \frac{2}{3}, \frac{-1}{3}\right)$	are the vertices of a qua	adrilateral ABCD, then its area is
	·			
	$(1)\frac{4\sqrt{2}}{3}$	(2) $\frac{5\sqrt{2}}{3}$	(3) 2√2	$(4)\frac{2\sqrt{2}}{3}$
3.	$\int_0^{\pi/4} \frac{\cos^2 x \sin^2 x}{(\cos^3 x + \sin^3 x)^2} dx$	is equal to		
	(1) 1/12	(2) 1/9	(3) 1/6	<mark>(4)</mark> 1/3
4.	The mean and star	ndard deviation of 20 obs	servations are found to	be 10 and 2, respectively. On
	respectively, it was fo	ound that an observation b	y mistake was taken 8 in	stead of 12. The correct standard
	deviation is			
	(1) √ <u>3.86</u>	(2) 1.8	(3) √ <u>3.96</u>	<mark>(4)</mark> 1.94
5.	The function $f(x) = \frac{1}{2}$	$\frac{x^2+2x-15}{x^2-4x+9}$, $x \in R$ is		
	(1) both one-one and	l onto.	(2) onto but not one-o	ne.
	(3) neither one-one n	or onto.	(4) one-one but not or	nto.
6.	Let $A = \{n \in [100,70]$	$0] \cap N: n$ is neither a multip	ble of 3 nor a multiple of	4}. Then the number of elements
	in A is			
	(1) 300	(2) 280	(3) 310	(4) 290
7.	Let C be the circle of	minimum area touching the	e parabola $y = 6 - x^2$ and	d the lines $y = \sqrt{3} x $. Then, which
	one of the following p	points lies on the circle C?		
	(1) (2,4)	(2) (1,2)	(3) (2,2)	(4) (1,1)
8.	For $\alpha, \beta \in \mathbb{R}$ and a nation	itural number n, let		
	$A_r = \begin{vmatrix} r & 1 & \frac{n^2}{2} \\ 2r & 2 & n^2 \\ 3r - 2 & 3 & \frac{n(3)}{2} \end{vmatrix}$	$\left. + \alpha - \beta \right _{\frac{n-1}{2}}$. Then $2A_{10} - A_8$ is		

- 9. The shortest distance between the lines $\frac{x-3}{2} = \frac{y+15}{-7} = \frac{z-9}{5}$ and $\frac{x+1}{2} = \frac{y-1}{1} = \frac{z-9}{-3}$ is _____. (1) $6\sqrt{3}$ (2) $4\sqrt{3}$ (3) $5\sqrt{3}$ (4) $8\sqrt{3}$
- 10. A company has two plants A and B to manufacture motorcycles. 60% motorcycles are manufactured at plant A and the remaining are manufactured at plant B. 80% of the motorcycles manufactured at plant A are rated of the standard quality, while 90% of the motorcycles manufactured at plant B are rated of the standard quality. A motorcycle picked up randomly from the total production is found to be of the standard quality. If *p* is the probability that it was manufactured at plant *B*, then 126 p is _____.
 (1) 54
 (2) 64
 (3) 66
 (4) 56
- **11.** Let, α, β be the distinct roots of the equation $x^2 (t^2 5t + 6)x + 1 = 0, t \in \mathbb{R}$ and $a_n = \alpha^n + \beta^n$ Then the minimum value of $\frac{a_{2023} + a_{2025}}{a_{2024}}$ is _____.

(1)
$$\frac{1}{4}$$
 (2) $-\frac{1}{2}$ (3) $-\frac{1}{4}$ (4) $\frac{1}{2}$

- **12.** Let the relations R_1 and R_2 on the set
 - $X = \{1, 2, 3, \dots, 20\}$ be given by

 $R_1 = \{(x, y): 2x - 3y = 2\}$ and

 $R_2 = \{(x, y): -5x + 4y = 0\}$. If M and N be the minimum number of elements required to be added in R_1 and R_2 , respectively, in order to make the relations symmetric, then M + N equals _____.

- **13.** Let a variable line of slope m > 0 passing through the point (4, -9) intersect the coordinate axes at the points A and B. the minimum value of the sum of the distances of A and B from the origin is _____. (1) 25 (2) 30 (3) 15 (4) 10
- **14.** The interval in which the function $f(x) = x^x, x > 0$, is strictly increasing is _____.

(2) 56

(2) 154

(1)
$$\left(0, \frac{1}{e}\right]$$
 (2) $\left[\frac{1}{e^2}, 1\right)$ (3) $(0, \infty)$ (4) $\left[\frac{1}{e}, \infty\right)$

15. A circle in inscribed in an equilateral triangle of side of length 12. If the area and perimeter of any square inscribed in this circle are m and n, respectively, then m + n² is equal to _____.
(1) 396 (2) 408 (3) 312 (4) 414

16. The number of triangles whose vertices are at the vertices of a regular octagon but none of whose sides is a side of the octagon is _____.

(3) 16

(4) 48

(4) 162

17. Let
$$y = y(x)$$
 be the solution of the differential equation $(1 + x^2)\frac{dy}{dx} + y = e^{\tan^{-1}x}$, $y(1) = 0$. Then $y(0)$ is .

(1)
$$\frac{1}{4} (e^{\pi/2} - 1)$$
 (2) $\frac{1}{2} (1 - e^{\pi/2})$ (3) $\frac{1}{4} (1 - e^{\pi/2})$ (4) $\frac{1}{2} (e^{\pi/2} - 1)$

18. Let y = y(x) be the solution of the differential equation $(2x\log_e x)\frac{dy}{dx} + 2y = \frac{3}{x}\log_e x, x > 0$ and $y(e^{-1}) = 0$. Then, y(e) is equal to _____.

(1)
$$-\frac{3}{2e}$$
 (2) $-\frac{2}{3e}$ (3) $-\frac{3}{e}$ (4) $-\frac{2}{e}$

19. Let the area of the region enclosed by the curves y = 3x, 2y = 27 - 3x and $y = 3x - x\sqrt{x}$ be A. Then 10 A is equal to _____.

(1) 184

	(_)	(-) ···=	()) =	
motichun	OFFICE ADDRESS : Plot nur 10 B Scheme, Triveni Naga	nber 35, Gopalpura Bypass r, Gopal Pura Mode, Jaipur,	Rd, near Riddhi Siddh Rajasthan 302020	i Circle,
The Power of Real Gurus	www.competishun.com			•
5-192-0125-000-004-004-004-02	Mob. 8888-0000-21, 741090090	1		

(3) 172

20.	Let	$f:(-\infty,\infty)-$	$\{0\} \rightarrow R$ b	e a	differentiable	function	such	that	$f'(1) = \lim_{a \to \infty} a^2 f\left(\frac{1}{a}\right).$	Then
	lim _{a-}	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	$\left(\frac{1}{a}\right) + a^2 - a^2$	2log	$_{e}a$ is equal to _	<u> </u>				
	$(1)\frac{3}{2}$	$+\frac{\pi}{4}$	(2)	$\frac{3}{3} + \frac{\pi}{4}$		$(3)\frac{5}{2}+\frac{\pi}{8}$			$(4)\frac{3}{4}+\frac{\pi}{8}$	
SECTION-B										

- **21.** Let $\alpha\beta\gamma = 45$; $\alpha, \beta, \gamma \in R$. If $x(\alpha, 1, 2) + y(1, \beta, 2) + z(2, 3, \gamma) = (0, 0, 0)$ for some $x, y, z \in R, xyz \neq 0$, then $6\alpha + 4\beta + \gamma$ is equal to_____.
- **22.** Let a conic C pass through the point (4, -2) and $P(x, y), x \ge 3$, be any point on C. Let the slope of the line touching the conic C only at a single point P be half the slope of the line joining the points P and (3, -5). If the focal distance of the point (7,1) on C is d, then 12 d equals _____.

23. Let
$$r_k = \frac{\int_0^1 (1-x^7)^k dx}{\int_0^1 (1-x^7)^{k+1} dx}$$
, $k \in N$. Then the value of $\sum_{k=1}^{10} \frac{1}{7(r_k-1)}$ is equal to ______

- 24. Let x_1, x_2, x_3, x_4 be the solution of the equation $4x^4 + 8x^3 17x^2 12x + 9 = 0$ and $(4 + x_1^2)(4 + x_2^2)(4 + x_3^2)(4 + x_4^2) = \frac{125}{16}m$. Then the value of *m* is _____.
- **25.** Let L_1 , L_2 be the lines passing through the point P(0,1) and touching the parabola $9x^2 + 12x + 18y 14 = 0$. Let Q and R be the points on the lines L_1 and L_2 such that the \triangle PQR is an isosceles triangle with base QR. If the slopes of the lines QR are m_1 and m_2 , then $16(m_1^2 + m_2^2)$ is equal to _____.
- 26. If the second, third and fourth terms in the expansion of $(x + y)^n$ are 135,30 and $\frac{10}{3}$, respectively, then $6(n^3 + x^2 + y)$ is equal to
- 27. Let the first term of a series be $T_1 = 6$ and its rth term $T_r = 3T_{r-1} + 6^r$, r = 2,3,...,n. If the sum of the first *n* terms of this series is $\frac{1}{5}(n^2 12n + 39)(4.6^n 5.3^n + 1)$. Then n is equal to _____.
- **28.** For $n \in N$, if $\cot^{-1} 3 + \cot^{-1} 4 + \cot^{-1} 5 + \cot^{-1} n = \frac{\pi}{4}$, then n is equal to _____.
- **29.** Let P be the point (10, -2, -1) and Q be the foot of the perpendicular drawn from the point R(1,7,6) on the line passing through the points (2, -5, 11) and (-6, 7, -5). Then the length of the line segment PQ is equal to _____.
- **30.** Let $\vec{a} = 2\hat{i} 3\hat{j} + 4\hat{k}$, $\vec{b} = 3\hat{i} + 4\hat{j} 5\hat{k}$, and a vector \vec{c} be such that $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times \vec{c} = \hat{i} + 8\hat{j} + 13\hat{k}$ If $\vec{a} \cdot \vec{c} = 13$, then $(24 - \vec{b} \cdot \vec{c})$ is equal to _____.

NTA ANSWER									
1.	(2)	2.	(1)	3.	(3)	4.	(3)	5.	(3)
6.	(1)	7.	(1)	8.	(1)	9.	(2)	10.	(1)
11.	(3)	12.	(4)	13.	(1)	14.	(4)	15.	(2)
16.	(3)	17.	(2)	18.	(3)	19.	(4)	20.	(3)
21.	(55)	22.	(75)	23.	(65)	24.	(221)	25.	(68)
26.	(806)	27.	(6)	28.	(47)	29.	(13)	30.	(46)

Compatishup	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020				
COMPENSION The Power of Real Gurus	www.competishun.com	3			
	Mob. 8888-0000-21, 7410900901	-3			