## JEE-MAIN EXAM APRIL, 2024

Date: - 06-04-2024 (SHIFT-1)

## PHYSICS

|    |                                                                                                                                  | SECT                                                                                                | ION-A                              |                                  |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------|--|--|--|--|--|--|
| 1. | To find the spring constant (k) of a spring experimentally, a student commits 2% positive error in the                           |                                                                                                     |                                    |                                  |  |  |  |  |  |  |
|    | measurement of time and 1% negative error in measurement of mass. The percentage error in                                        |                                                                                                     |                                    |                                  |  |  |  |  |  |  |
|    | determining value of k is :                                                                                                      |                                                                                                     |                                    |                                  |  |  |  |  |  |  |
|    | (1) 3%                                                                                                                           | (2) 1%                                                                                              | (3) 4%                             | (4) 5%                           |  |  |  |  |  |  |
| 2. | A bullet of mass 50 g                                                                                                            | g is fired with a speed                                                                             | 100 m/s on a plywood a             | and emerges with 40 m/s. The     |  |  |  |  |  |  |
|    | percentage loss of kine                                                                                                          | etic energy is :                                                                                    |                                    |                                  |  |  |  |  |  |  |
|    | (1) 32%                                                                                                                          | (2) 44%                                                                                             | (3) 16%                            | (4) 84%                          |  |  |  |  |  |  |
| 3. | The ratio of the shorte                                                                                                          | The ratio of the shortest wavelength of Balmer series to the shortest wavelength of Lyman series fo |                                    |                                  |  |  |  |  |  |  |
|    | hydrogen atom is :                                                                                                               |                                                                                                     |                                    |                                  |  |  |  |  |  |  |
|    | (1) 4 : 1                                                                                                                        | (2) 1 : 2                                                                                           | (3) 1 : 4                          | <mark>(4)</mark> 2 : 1           |  |  |  |  |  |  |
| 4. | To project a body of m                                                                                                           | ass m from earth's surfa                                                                            | ce to infinity, the require        | d kinetic energy is (assume, the |  |  |  |  |  |  |
|    | radius of earth is $R_E$ , g                                                                                                     | = acceleration due to gra                                                                           | avity on the surface of ea         | arth):                           |  |  |  |  |  |  |
|    | (1) 2mgR⊧                                                                                                                        | (2) mgR⊧                                                                                            | (3) $\frac{1}{2}$ mgR <sub>E</sub> | (4) 4mgR <sub>E</sub>            |  |  |  |  |  |  |
|    |                                                                                                                                  |                                                                                                     | -                                  |                                  |  |  |  |  |  |  |
| 5. | Electromagnetic waves travel in a medium with speed of 1.5 × 10 <sup>8</sup> ms <sup>-1</sup> . The relative permeability of the |                                                                                                     |                                    |                                  |  |  |  |  |  |  |
|    | medium is 2.0. The rel                                                                                                           | ative permittivity will be :                                                                        |                                    |                                  |  |  |  |  |  |  |
|    | (1) 5                                                                                                                            | (2) 1                                                                                               | (3) 4                              | (4) 2                            |  |  |  |  |  |  |
| 6. | Which of the following                                                                                                           | phenomena does not ex                                                                               | plain by wave nature of li         | ght.                             |  |  |  |  |  |  |
|    | (A) reflection                                                                                                                   |                                                                                                     | (B) diffraction                    |                                  |  |  |  |  |  |  |
|    | (C) photoelectric effect                                                                                                         | t                                                                                                   | (D) interference                   |                                  |  |  |  |  |  |  |
|    | (E) polarization                                                                                                                 |                                                                                                     |                                    |                                  |  |  |  |  |  |  |
|    | Choose the most appr                                                                                                             | opriate answer from the o                                                                           |                                    |                                  |  |  |  |  |  |  |
|    | (1) E only                                                                                                                       | (2) C only                                                                                          | (3) B, D only                      | (4) A, C only                    |  |  |  |  |  |  |
| 7. | While measuring diam                                                                                                             | neter of wire using screw                                                                           | v gauge the following re           | adings were noted. Main scale    |  |  |  |  |  |  |
|    | reading is 1 mm and circular scale reading is equal to 42 divisions. Pitch of screw gauge is 1 mm and it                         |                                                                                                     |                                    |                                  |  |  |  |  |  |  |
|    | has 100 divisions on circular scale. The diameter of the wire is $\frac{x}{50}$ mm . The value of x is :                         |                                                                                                     |                                    |                                  |  |  |  |  |  |  |
|    | (1) 142                                                                                                                          | (2) 71                                                                                              | (3) 42                             | (4) 21                           |  |  |  |  |  |  |



**8.** σ is the uniform surface charge density of a thin spherical shell of radius R. The electric field at any point on the surface of the spherical shell is :

(1) 
$$\sigma / \epsilon_0 R$$
 (2)  $\sigma / 2\epsilon_0$  (3)  $\sigma / \epsilon_0$  (4)  $\sigma / 4\epsilon_0$ 

**9.** The value of unknown resistance (x) for which the potential difference between B and D will be zero in the arrangement shown, is :



**10.** The specific heat at constant pressure of a real gas obeying PV<sup>2</sup> = RT equation is :

(1) 
$$C_V + R$$
 (2)  $\frac{R}{3} + C_V$  (3)  $R$  (4)  $C_V + \frac{R}{2V}$ 

11. Match List I with List II

|    | LIST I          |      | LIST II                    |  |  |  |
|----|-----------------|------|----------------------------|--|--|--|
| Α. | Torque          | I.   | $[M^{1}L^{1}T^{-2}A^{-2}]$ |  |  |  |
| В. | Magnetic field  | II.  | $[L^2A^1]$                 |  |  |  |
| C. | Magnetic moment | III. | $[M^1T^{-2}A^{-1}]$        |  |  |  |
| D. | Permeability of | IV.  | $[M^{1}L^{2}T^{-2}]$       |  |  |  |
|    | free space      |      |                            |  |  |  |

Choose the correct answer from the options given below :

| (1) A-I, B-III, C-II, D-IV | (2) A-IV, B-III, C-II, D-I |
|----------------------------|----------------------------|
| (3) A-III, B-I, C-II, D-IV | (4) A-IV, B-II, C-III, D-I |

**12.** Given below are two statements :

**Statement I :** In an LCR series circuit, current is maximum at resonance.

**Statement II**: Current in a purely resistive circuit can never be less than that in a series LCR circuit when connected to same voltage source.

In the light of the above statements, choose the correct from the options given below :

- (1) Statement I is true but Statement II is false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false



OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 www.competishun.com **13.** The correct truth table for the following logic circuit is :



**14.** A sample contains mixture of helium and oxygen gas. The ratio of root mean square speed of helium and oxygen in the sample, is :

(1) 
$$\frac{1}{32}$$
 (2)  $\frac{2\sqrt{2}}{1}$  (3)  $\frac{1}{4}$  (4)  $\frac{1}{2\sqrt{2}}$ 

**15.** A light string passing over a smooth light pulley connects two blocks of masses  $m_1$  and  $m_2$  (where

$$m_2 > m_1$$
). If the acceleration of the system is  $\frac{9}{\sqrt{2}}$ , then the ratio of the masses  $\frac{m_1}{m_2}$  is

(1) 
$$\frac{\sqrt{2}-1}{\sqrt{2}+1}$$
 (2)  $\frac{1+\sqrt{5}}{\sqrt{5}-1}$  (3)  $\frac{1+\sqrt{5}}{\sqrt{2}-1}$  (4)  $\frac{\sqrt{3}+1}{\sqrt{2}-1}$ 

**16.** Four particles A, B, C, D of mass  $\frac{m}{2}$ , m, 2m, 4m, have same momentum, respectively. The particle with maximum kinetic energy is : (1) D (2) C (3) A (4) B

17. A train starting from rest first accelerates uniformly up to a speed of 80 km/h for time t, then it moves with a constant speed for time 3t. The average speed of the train for this duration of journey will be (in km/h):

**18.** An element  $\Delta l = \Delta x i$  is placed at the origin and carries a large current I = 10 A. The magnetic field on the y-axis at a distance of 0.5 m from the elements  $\Delta x$  of 1 cm length is :





**19.** A small ball of mass m and density  $\rho$  is dropped in a viscous liquid of density  $\rho_0$ . After sometime, the ball falls with constant velocity. The viscous force on the ball is :

(1) 
$$mg\left(\frac{\rho_0}{\rho} - 1\right)$$
 (2)  $mg\left(1 + \frac{\rho}{\rho_0}\right)$  (3)  $mg\left(1 - \rho\rho_0\right)$  (4)  $mg\left(1 - \frac{\rho_0}{\rho}\right)$ 

In photoelectric experiment energy of 2.48 eV irradiates a photo sensitive material. The stopping potential was measured to be 0.5 V. Work function of the photo sensitive material is :
(1) 0.5 eV
(2) 1.68eV
(3) 2.48 eV
(4) 1.98 eV

## SECTION-B

- **21.** If the radius of earth is reduced to three-fourth of its present value without change in its mass then value of duration of the day of earth will be hours 30 minutes.
- **22.** Three infinitely long charged thin sheets are placed as shown in figure. The magnitude of electric field at the point P is  $\frac{X\sigma}{\epsilon_0}$ . The value of x is (all quantities are measured in SI units).



- 23. A big drop is formed by coalescing 1000 small droplets of water. The ratio of surface energy of 1000 droplets to that of energy of big drop is  $\frac{10}{x}$ . The value of x is
- 24. When a dc voltage of 100 V is applied to an inductor, a de current of 5A flows through it. When an ac voltage of 200 V peak value is connected to inductor, its inductive reactance is found to be  $20\sqrt{3}\Omega$ . The power dissipated in the circuit is W.
- **25.** The refractive index of prism is  $\mu = \sqrt{3}$  and the ratio of the angle of minimum deviation to the angle of prism is one. The value of angle of prism is
- **26.** A wire of resistance R and radius r is stretched till its radius became r/2. If new resistance of the stretched wire is x, then value of x is
- **27.** Radius of a certain orbit of hydrogen atom is 8.48Å. If energy of electron in this orbit is E/x, then x = (Given  $a_0 = 0.529$ Å, E = energy of electron in ground state)
- 28. A circular coil having 200 turns, 2.5×10<sup>-4</sup> m<sup>2</sup> area and carrying 100 μA current is placed in a uniform magnetic field of 1T. Initially the magnetic dipole moment (M) was directed along B. Amount of work, required to rotate the coil through 90° from its initial orientation such that M becomes perpendicular to B, is μJ.
- **29.** A particle is doing simple harmonic motion of amplitude 0.06 m and time period 3.14 s. The maximum velocity of the particle is cm/s.
- **30.** For three vectors  $\vec{A} = (-x\hat{\imath} 6\hat{\jmath} 2\hat{k})$ ,  $\vec{B} = (-\hat{\imath} + 4\hat{\jmath} + 3\hat{k})$  and  $\vec{c} = (-8\hat{\imath} \hat{\jmath} + 3\hat{k})$ . if  $\vec{A} \cdot (\vec{B} \times \vec{C}) = 0$ , them value of x is.



| NTA ANSWERS |      |     |     |     |       |     |      |     |      |     |      |     |      |
|-------------|------|-----|-----|-----|-------|-----|------|-----|------|-----|------|-----|------|
| 1.          | (4)  | 2.  | (4) | 3.  | (1)   | 4.  | (2)  | 5.  | (4)  | 6.  | (2)  | 7.  | (2)  |
| 8.          | (3)  | 9.  | (3) | 10. | (4)   | 11. | (2)  | 12. | (3)  | 13. | (2)  | 14. | (2)  |
| 15.         | (1)  | 16. | (3) | 17. | (2)   | 18. | (1)  | 19. | (4)  | 20. | (4)  | 21. | (13) |
| 22.         | (2)  | 23. | (1) | 24. | (250) | 25. | (60) | 26. | (16) | 27. | (16) | 28. | (5)  |
| 29.         | (12) | 30. | (4) |     |       |     |      |     |      |     |      |     |      |





OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020