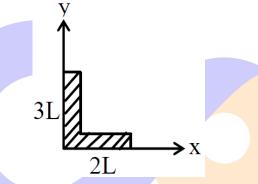
JEE-MAIN EXAM APRIL, 2025

Date: - 07-04-2025 (SHIFT-1)

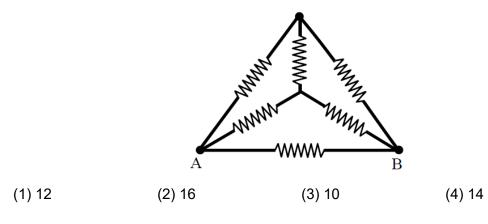

PHYSICS

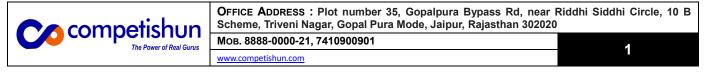
SECTION-A

1. The percentage increase in magnetic field (B) when space within a current carrying solenoid is filled with magnesium (magnetic susceptibility $\chi_{Mg} = 1.2 \times 10^{-5}$) is :

(1)
$$\frac{5}{6} \times 10^{-4}\%$$
 (2) $\frac{6}{5} \times 10^{-3}\%$ (3) $\frac{5}{3} \times 10^{-5}\%$ (4) $\frac{5}{6} \times 10^{-5}\%$

2. A rod of length 5 L is bent right angle keeping one side length as 2 L.




The position of the centre of mass of the system: (Consider L = 10 cm)

(1)
$$3\hat{i} + 7\hat{j}$$
 (2) $5\hat{i} + 8\hat{j}$ (3) $4\hat{i} + 9\hat{j}$ (4) $2\hat{i} + 3\hat{j}$

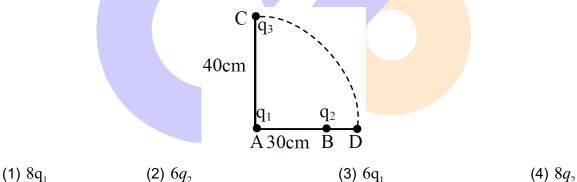
3. For a hydrogen atom, the ratio of the largest wavelength of Lyman series to that of the Balmer series is

4. A wire of resistance R is bent into a triangular pyramid as shown in figure with each segment having same length. The resistance between points A and B is R/n. The value of n is :

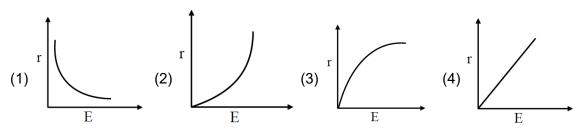
5. An object of mass 1000 g experiences a time dependent force $\vec{F} = (2t\hat{i} + 3t^2\hat{j})N$. The power generated by the force at time t is:

(1)
$$(2t^2 + 3t^3)W$$
 (2) $(2t^3 + 3t^5)W$ (3) $(3t^3 + 5t^5)W$ (4) $(2t^2 + 18t^3)W$

6. Two plane polarized light waves combine at a certain point whose electric field components are


 $E_1 = E_0 \sin \omega t$

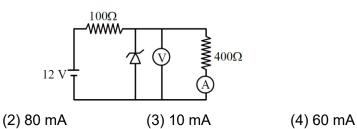
$$E_2 = E_0 \sin\left(\omega t + \frac{\pi}{3}\right)$$


Find the amplitude of the resultant wave.

- (1) $3.4E_0$ (2) $0.9E_0$ (3) E_0 (4) $1.7E_0$
- 7. Two charges q_1 and q_2 are separated by a distance of 30 cm. A third charge q_3 initially at 'C' as shown in the figure, is moved along the circular path of radius 40 cm from C to D. If the difference in potential energy due to movement of q_3 from C to D is given by $\frac{q_3 K}{4\pi\epsilon_0}$, the value

of K is:

8. A particle of charge q, mass m and kinetic energy E enters in magnetic field perpendicular to its velocity and undergoes a circular arc of radius (r). Which of the following curves represents the variation of r with E ?


9. Two harmonic waves moving in the same direction superimpose to form a wave $x = a\cos(1.5t)\cos(50.5t)$ where t is in seconds. Find the period with which they beat. (close to nearest integer)

(1) 1 s	(2) 2 s	(3) 6 s	(4) 4 a	
Co competishun	OFFICE ADDRES	ss:Plot number 35, Gopalpur i Nagar, Gopal Pura Mode, Jaip		dhi Siddhi Circle, 10 B
The Power of Real Gurus	Мов. 8888-0000		2	
	www.competishun.co	<u>m</u>		L

(1) 24 mA

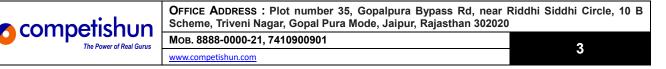
10. In the following circuit, the reading of the ammeter will be

(Take Zener breakdown voltage = 4 V)

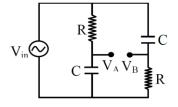
11. Uniform magnetic fields of different strengths (B_1 and B_2), both normal to the plane of the paper exist as shown in the figure. A charged particle of mass m and charge q, at the interface at an instant, moves into the region 2 with velocity v and returns to the interface. It continues to move into region 1 and finally reaches the interface. What is the displacement of the particle during this movement along the interface ?

(Consider the velocity of the particle to be normal to the magnetic field and $B_2 > B_1$)

(1)
$$\frac{mv}{qB_1} \left(1 - \frac{B_2}{B_1}\right)$$
 (2) $\frac{mv}{qB_1} \left(1 - \frac{B_1}{B_2}\right)$ (3) $\frac{mv}{qB_1} \left(1 - \frac{B_2}{B_1}\right) \times 2$ (4) $\frac{mv}{qB_1} \left(1 - \frac{B_1}{B_2}\right) \times 2$

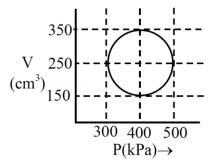

12. If ϵ_0 denotes the permittivity of free space and Φ_E is the flux of the electric field through the area bounded by the closed surface, then dimensions of $\left(\epsilon_0 \frac{d\phi_E}{dt}\right)$ are that of :

(1) electric charge (2) electric current (3) electric potential (4) electric field
13. A lens having refractive index 1.6 has focal length of 12 cm, when it is in air. Find the focal length of the lens when it is placed in water. (Take refractive index of water as 1.28)


(1) 288 mm (2) 655 mm (3) 355 mm (4) 555 mm

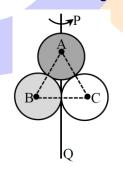
14. Match the LIST-I with LIST-I

	List-I		List-II
Α.	Triatomic rigid gas	Ι.	$\frac{C_P}{C_V} = \frac{5}{3}$
В.	Diatomic non-rigid gas	11.	$\frac{C_P}{C_V} = \frac{7}{5}$
C.	Monoatomic gas	III.	$\frac{C_P}{C_V} = \frac{4}{3}$
D.	Diatomic rigid gas	IV.	$\frac{C_P}{C_V} = \frac{9}{7}$



HYSI	CS			07-04-2025 (MORNING SESSION
	Choose the correct	answer from the option	ons given below:	
	(1) A-III, B-II, C-IV,	D-I	(2) A-II, B-IV, C-I,	D-III
	(3) A-IV, B-II, C-III,	D-I	(4) A-III, B-IV, C-I,	D-II
5.	In a hydrogen like	ion, the energy diffe	rence between the 2	2 nd excitation energy state an
	ground is 108.8 eV	. The atomic number	of the ion is:	
	(1) 4	(2) 1	(3) 2	(4) 2
6.	Two projectiles are	e fired from ground v	with same initial spee	eds from same point at angle
	$(45^{\circ} + \alpha)$ and (45°)	$\left(e^{2}-lpha ight)$ with horizontal	direction. The ratio of	their times of flights is
	(1) $\frac{1+\tan\alpha}{1-\tan\alpha}$	$(2) \ \frac{1+\sin 2\alpha}{1-\sin 2\alpha}$	$(3) \ \frac{1-\tan\alpha}{1+\tan\alpha}$	(4) 1
7.	A cubic block of ma	ass m is sliding down	on an inclined plane a	at 60° with an acceleration of $\frac{g}{2}$
	the value of coeffic	ient of kinetic friction i	S	
	(1) $1 - \frac{\sqrt{3}}{2}$	(2) $\sqrt{3} - 1$	(3) $\frac{\sqrt{3}}{2}$	(4) $\frac{\sqrt{2}}{3}$
8.	Two thin convex le	nses of focal lengths	30 cm and 10 cm are	e placed coaxially, 10 cm apar
	The power of this o	ombination is:		
	(1) 20 D	(2) 10 D	(3) 5 D	(4) 1 D
9.	An ac current is	represented as $i = 5$	$\sqrt{2}$ + 10 cos $\left(\frac{650}{\pi t} + \frac{\pi}{6}\right)$	$\frac{\tau}{5}$ Amp. The r.m.s value of th
	current is			
	(1) 100 Amp	(2) 10 Amp	(3) 5√2Amp	(4) 50 Amp
	., .			
0.	Two wires A and	B are made of same	e material having rati	io of lengths $\frac{L_A}{L_B} = \frac{1}{3}$ and the
	diameters ratio $rac{d_{_A}}{d_{_B}}$	= 2. If both the wires	s are stretched using	same force, what would be th
	ratio of their respec	•		
	(1) 1 : 12	(2) 3 : 4	(3) 1 : 3	(4) 1 : 6
		SEC	CTION-B	
1.	For ac circuit show	n in figure, $R = 100 ks$	Ω and $C\!=\!100 pF$ an	d the phase difference betwee
	$\mathbf{V}_{\rm r}$ and $(\mathbf{V}_{\rm p}-\mathbf{V}_{\rm r})$	is 90°. The input sign	al frequency is 10^x radius	d/\sec , where 'x' is
	in ('B 'A)			

competishun The Power of Real Gurus	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020					
	Мов. 8888-0000-21, 7410900901	4				
	www.competishun.com					


- 22. A container contains a liquid with refractive index of 1.2 up to a height of 60 cm and another liquid having refractive index 1.6 is added to height H above first liquid. If viewed from above, the apparent shift in the position of bottom of container is 40 cm. The value of H is ____cm . (Consider liquids are immiscible)
- 23. An ideal gas has undergone through the cyclic process as shown in the figure. Work done by the gas in the entire cycle is _____ ×10⁻¹ J. (Take $\pi = 3.14$)

24. A wire of length 10 cm and diameter 0.5 mm is used in a bulb. The temperature of the wire is 1727°C and power radiated by the wire is 94.2 W. Its emissivity is $\frac{x}{8}$ where x =____

(Given $\sigma = 6.0 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$, $\pi = 3.14$ and assume that the emissivity of wire material is same at all wavelength.)

25. A,B and C are disc, solid sphere and spherical shell respectively with same radii and masses. These masses are placed as shown in figure.

The moment of inertia of the given system about PQ axis is $\frac{x}{15}I$, where I is the moment of inertia of the disc about its diameter. The value of x is

NTA ANSWERS													
1.	(2)	2.	(3)	3.	(2)	4.	(1)	5.	(2)	6.	(4)	7.	(4)
8.	(3)	9.	(2)	10.	(3)	11.	(4)	12.	(2)	13.	(1)	14.	(4)
15.	(4)	16.	(1)	17.	(2)	18.	(2)	19.	(2)	20.	(1)	21.	(5)
22.	(80)	23.	(314)	24.	(5)	25.	(199)						

competishun The Power of Real Gurus	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020					
	Мов. 8888-0000-21, 7410900901	5				
	www.competishun.com	5				