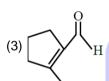

## **JEE-MAIN EXAM APRIL, 2025**

Date: - 08-04-2025 (SHIFT-2)

### **CHEMISTRY**


#### **SECTION-A**



is









2. Given below are two statements:

Statement I :  $H_2Se$  is more acidic than  $H_2Te$ 

Statement II:  $H_2$  Se has higher bond enthalpy for dissociation than  $H_2$ Te

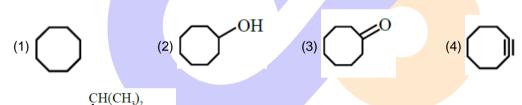
In the light of the above statements, choose the correct answer from the options given below

- (1) Statement I is false but Statement II is true
- (2) Both Statement I and Statement II are true
- (3) Statement I is true but Statement II is false
  - (4) Both Statement I and Statement II are false
- 3. In a first order decomposition reaction, the time taken for the decomposition of reactant to one fourth and one eighth of its initial concentration are  $t_1$  and  $t_2(s)$ , respectively. The ratio  $t_1/t_2$  will be:
  - (1)  $\frac{4}{3}$
- (2)  $\frac{3}{4}$
- (3)  $\frac{2}{3}$
- (4)  $\frac{3}{2}$
- 4. On combustion 0.210 g of an organic compound containing C, H and O gave  $0.127\,\mathrm{gH_2O}$  and  $0.307\,\mathrm{gCO_2}$ . The percentages of hydrogen and oxygen in the given organic compound respectively are:
  - (1) 6.72,53.41
- (2) 6.72,39.87
- (3) 7.55,43.85
- (4) 53.41,39.6



OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

5. Match the LIST-I with LIST-II


| LIST-I |              | LIST-II |                                             |
|--------|--------------|---------|---------------------------------------------|
| A.     | Carbocation  | I.      | Species that can                            |
|        |              |         | supply a pair of                            |
|        |              |         | electrons.                                  |
| B.     | C-Free       | II.     | Species that can                            |
|        | radical      |         | receive a pair of                           |
|        |              |         | electrons.                                  |
| C.     | Nucleophile  | III.    | sp <sup>2</sup> hybridized                  |
|        |              |         | carbon with empty                           |
|        |              |         | p-orbital.                                  |
| D.     | Electrophile | IV      | sp <sup>2</sup> /sp <sup>3</sup> hybridized |
|        |              |         | carbon with one                             |
|        |              |         | unpaired electron.                          |

Choose the correct answer from the options given below:

(1) A-IV, B-II, C-III, D-I (2) A-III, B-IV, C-I, D-II (3) A-II, B-III, C-II, D-IV (4) A-III, B-IV, C-II, D-I

6. 1, 2-dibromocyclooctane 
$$\xrightarrow{(i) \text{ KOH (alc.)}}$$
  $\xrightarrow{(ii) \text{ NaNH}_2}$   $\xrightarrow{(iii) \text{Hg}^{2+}/\text{H}^+}$   $\xrightarrow{(iv) \text{ Zn-Hg}/\text{H}^+}$ 

'P' is



7.

Choose the correct option for structures of A and B, respectively

(3) 
$$H_2N - CH - COO_{\text{and}} + H_3N - CH - COOH_{\text{CH}} + CH_3)_2$$
 CH (CH<sub>3</sub>)<sub>2</sub>

8. What is the correct IUPAC name of

- (1) 1-Ethyl-3-hydroxycyclopent-2-ene
- (2) 4-Ethyl-1-hydroxycyclopent-2-ene
- (3) 1-Ethylcyclopent-2-en-3-ol
- (4) 4-Ethylcyclopent-2-en-1-ol



OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

Mob. 7410900901, 7410900906, 7410900907, 7410900908

- 9. Which of the following binary mixture does not show the behaviour of minimum boiling azeotropes?
  - (1)  $H_2O + CH_3COC_2H_5$

(2)  $CS_2 + CH_3COCH_3$ 

(3) CH<sub>3</sub>OH+CHCl<sub>3</sub>

- (4)  $C_6H_5OH + C_6H_5NH_7$
- **10.** Given below are two statements:

**Statement I**: A homoleptic octahedral complex, formed using monodentate ligands, will not show stereoisomerism

Statement II: cis- and trans - platin are heteroleptic complexes of Pd.

In the light of the above statements, choose the correct answer from the options given below

- (1) Both Statement I and Statement II are false
- (2) Both Statement I and Statement II are true
- (3) Statement I is false but Statement II is true
- (4) Statement I is true but Statement II is false
- 11. Choose the correct set of reagents for the following conversion.

Ethyl benzene 
$$\longrightarrow$$
  $E$ 

- (1)  $Cl_2$  / Fe;  $Br_2$  / anhy.  $AlCl_3$ ; aq. KOH
- (2) Cl<sub>2</sub> / anhy. AlCl<sub>3</sub>; Br<sub>2</sub> / Fe; alc. KOH
- (3) Br<sub>2</sub> / Fe; Cl<sub>2</sub>,  $\Delta$ ; alc. KOH
- (4)  $Br_2$  / anhy.  $AlCl_3$ ;  $Cl_2$ ,  $\Delta$ ; aq. KOH
- Which one of the following reactions will not lead to the desired ether formation in major proportion? (iso-  $Bu \Rightarrow$  isobutyl,  $sec -Bu \Rightarrow$  sec-butyl,  $nPr \Rightarrow n-$  propyl,

 $^{t}$ Bu  $\Rightarrow$  tert-butyl, Et  $\Rightarrow$  ethyl

(1) 
$${}^{t}Bu\overline{O} \overset{+}{N} a + EtBr \longrightarrow {}^{t}Bu - O - Et$$

(2) 
$$\stackrel{\bigoplus}{\text{Na}} \stackrel{\bigcirc}{\text{O}} \longrightarrow + \text{n -PrBr} \longrightarrow \text{n -Pr-O} \longrightarrow$$

(3) 
$$\bigcirc$$
 O $\bigcirc$  Na + CH<sub>3</sub>Br  $\longrightarrow$  O $\bigcirc$  O $\bigcirc$  CH<sub>3</sub>

- (4) iso-Bu $\overrightarrow{O}$  N  $a + \sec BuBr \longrightarrow \sec Bu O iso Bu$
- 13. The atomic number of the element from the following with lowest  $1^{st}$  ionisation enthalpy is :
  - (1) 32
- (2)87
- (3) 35
- (4) 19



OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

14. 
$$A \xrightarrow{\text{(i)NaOH}} B \xrightarrow{\text{(i)EtOH}} C$$

'A' shows positive Lassaign's test for N and its molar mass is 121.

'B' gives effervescence with aq NaHCO<sub>3</sub>.

'C' gives fruity smell.

Identify A, B and C from the following.

(2) 
$$A = \bigcirc$$
,  $B = \bigcirc$ ,  $C = \bigcirc$ 

(4) 
$$A = \bigcirc$$
,  $B = \bigcirc$ ,  $C = \bigcirc$ 

15. The correct decreasing order of spin only magnetic moment values (BM) of  $Cu^+, Cu^{2+}, Cr^{2+}$  and  $Cr^{3+}$  ions is :

(1) 
$$Cr^{2+} > Cr^{3+} > Cu^{2+} > Cu^{3+}$$

(2) 
$$Cr^{3+} > Cr^{2+} > Cu^{+} > Cu^{2+}$$

(3) 
$$Cu^+ > Cu^{2+} > Cr^{3+} > Cr^{2+}$$

(4) 
$$Cu^{2+} > Cu^{+} > Cr^{2+} > Cr^{3+}$$

16. Match the LIST-I with LIST-II

| LIST-I            |                                    | LIST-II           |                     |
|-------------------|------------------------------------|-------------------|---------------------|
| (Complex/Species) |                                    | (Shape & magnetic |                     |
|                   |                                    | moment)           |                     |
| A.                | [Ni(CO) <sub>4</sub> ]             | I.                | Tetrahedral, 2.8 BM |
| B.                | $[Ni(CN)_4]^{2-}$                  | II.               | Square planar, 0 BM |
| C.                | [NiCl <sub>4</sub> ] <sup>2-</sup> | III.              | Tetrahedral, 0 BM   |
| D.                | $[MnBr_4]^{2-}$                    | IV                | Tetrahedral, 5.9 BM |

Choose the correct answer from the options given below:

(1) A-IV, B-I, C-III, D-II

(2) A-III, B-IV, C-II, D-I

(3) A-III, B-II, C-I, D-IV

(4) A-I, B-II, C-III, D-IV



OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

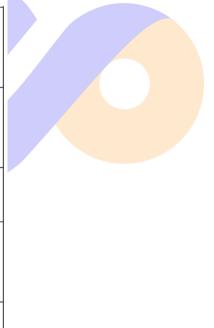
Mob. 7410900901, 7410900906, 7410900907, 7410900908

4

 $HA(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$ 17.

> The freezing point depression of a 0.1 m aqueous solution of a monobasic weak acid HA is 0.20 °C. The dissociation constant for the acid is

Given:  $K_{\epsilon}(H_2O) = 1.8 K kg mol^{-1}$ , molality = molarity


- $(1)1.90\times10^{-3}$
- (2)  $1.89 \times 10^{-1}$  (3)  $1.38 \times 10^{-3}$  (4)  $1.1 \times 10^{-2}$
- 18. Correct statements for an element with atomic number 9 are
  - A. There can be 5 electrons for which  $m_{\rm S}=+\frac{1}{2}$  and 4 electrons for which  $m_{\rm S}=-\frac{1}{2}$
  - B. There is only one electron in  $p_{\scriptscriptstyle {\it z}}$  orbital.
  - C. The last electron goes to orbital with n = 2 and l = 1.
  - D. The sum of angular nodes of all the atomic orbitals is 1.

Choose the correct answer from the options given below:

- (1) A, C and D Only
- (2) C and D Only
- (3) A and B Only
- (4) A and C Only

Match the LIST-I with LIST-II 19.

| LIST-I    |                   | LIST-II           |                   |
|-----------|-------------------|-------------------|-------------------|
| (Reagent) |                   | (Functional Group |                   |
|           |                   | detected)         |                   |
| A.        | Sodium            | I.                | double            |
|           | bicarbonate       |                   | bond/unsaturation |
|           | solution          |                   |                   |
| B.        | Neutral ferric    | II.               | carboxylic acid   |
|           | chloride          |                   |                   |
| C.        | ceric             | III.              | phenolic - OH     |
|           | ammonium          |                   |                   |
|           | nitrate           |                   |                   |
| D.        | alkaline          | IV                | alcoholic - OH    |
|           | KMnO <sub>4</sub> |                   |                   |



Choose the correct answer from the options given below:

(1) A-III, B-II, C-IV, D-I

(2) A-II, B-IV, C-III, D-I

(3) A-II, B-III, C-I, D-IV

- (4) A-II, B-III, C-IV, D-I
- The number of species from the following that are involved in  $sp^3d^2$  hybridization is 20.

$$\left[\text{Co}\big(\text{NH}_{3}\big)_{\!\!6}\right]^{\!\!3^{\!\!4}},\!SF_{\!\!6},\!\left[\text{Cr}F_{\!\!6}\right]^{\!\!3^{\!\!-}},\!\left[\text{Co}F_{\!\!6}\right]^{\!\!3^{\!\!-}},\!\left[\text{Mn}(\text{CN})_{\!\!6}\right]^{\!\!3^{\!\!-}}\text{ and }\left[\text{MnCl}_{\!\!6}\right]^{\!\!3^{\!\!-}}$$

(1) 4

(2)6

(3)5

(4) 3



OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

Mob. 7410900901, 7410900906, 7410900907, 7410900908

www.competishun.com

### **SECTION-B**

21. Consider the following half cell reaction

$$Cr_2O_7^{2-}(aq) + 6e^- + 14H^+(aq) \longrightarrow 2Cr^{3+}(aq) + 7H_2O(1)$$

The reaction was conducted with the ratio of  $\frac{\left[Cr^{3+}\right]^2}{\left[Cr_2O_7^{2-}\right]}$  =  $10^{-6}$ . The pH value at which the EMF of the

half cell will become zero is \_\_\_\_\_\_ . (nearest integer value)

[Given : Standard half cell reduction potential 
$$E_{Cr_2O_7^{2^-},H^+/Cr^{3+}}^{\circ} = 1.33 \, V, \frac{2.303 RT}{F} = 0.059 \, V.$$
]

- 22. The energy of an electron in first Bohr orbit of H -atom is -13.6 eV. The magnitude of energy value of electron in the first excited state of  $Be^{3+}$  is \_\_\_\_\_ eV (nearest integer value)
- 23. Resonance in  $X_2Y$  can be represented as

$$\overset{\bigcirc}{X} = \overset{\bigoplus}{X} = \overset{\bigcirc}{Y} \longleftrightarrow \overset{\bigcirc}{X} \equiv \overset{\bigcirc}{X} - \overset{\bigcirc}{Y}$$

The enthalpy of formation of  $X_2Y\left(X\equiv X(g)+\frac{1}{2}Y=Y(g)\rightarrow X_2Y(g)\right)$  is  $80\,\mathrm{kJ}\,\mathrm{mol}^{-1}$ . The

magnitude of resonance energy of  $X_2Y$  is \_\_\_\_\_ kJmol<sup>-1</sup> (nearest integer value)

Given : Bond energies of  $X \equiv X, X = X, Y = Y$  and X = Y are 940, 410, 500 and  $602 \, \text{kJ} \, \text{mol}^{-1}$  respectively.

valence X: 3, Y: 2

**24.** The equilibrium constant for decomposition of  $H_2O$  (g)

$$H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2}O_2(g) (\Delta G^{\circ} = 92.34 \text{ kJ mol}^{-1})$$

is  $8.0 \times 10^{-3}$  at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ( $\alpha$ ) of water is \_\_\_\_\_  $\times 10^{-2}$  (nearest integer value).

[Assume  $\alpha$  is negligible with respect to 1]

25. 20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is \_\_\_\_\_ M. (Nearest Integer value)

(Given : 
$$Na = 23$$
,  $I = 127$ ,  $Ag = 108$ ,  $N = 14$ ,  $O = 16 g \, mol^{-1}$ )

# **NTA ANSWERS**

1. (2) 2. (1) 3. (3) 4. (1) 5. (2) 6. (1) 7. (1) (4) 9. (4) 10. (4) 11. (3) 12. 13. (2) 14. (2) 8. (4)

15. (1) 16. (3) 17. (3) 18. (4) 19. (4) 20. (1) 21. (10)

22. (54) 23. (98) 24. (5) 25. (1)



OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

Mob. 7410900901, 7410900906, 7410900907, 7410900908