## JEE-MAIN EXAM APRIL, 2024

Date: - 08-04-2024 (SHIFT-2)

## MATHEMATICS

## **SECTION-A**

| 1.  | If the image of the point (-4,5) in the line $x + 2y = 2$ lies on the circle $(x + 4)^2 + (y - 3)^2 = r^2$ , then r is                                                                                                              |                                                                                                                           |                                                                                |                                              |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------|--|--|
|     | equal lo :                                                                                                                                                                                                                          |                                                                                                                           |                                                                                |                                              |  |  |
|     | (1) 1                                                                                                                                                                                                                               | (2) 2                                                                                                                     | (3) 75                                                                         | (4) 3                                        |  |  |
| 2.  | Let $\vec{a} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ , $\vec{b} = 2\hat{\imath} + 3\hat{\jmath} - 5\hat{k}$ and $\vec{c} = 3\hat{\imath} - \hat{\jmath} + \lambda\hat{k}$ be three vectors. Let $\vec{r}$ be a unit vector along |                                                                                                                           |                                                                                |                                              |  |  |
|     | $\vec{b} + \vec{c}$ . If $\vec{r} \cdot \vec{a} = 3$ , then 3                                                                                                                                                                       | $\lambda$ is equal to :                                                                                                   |                                                                                |                                              |  |  |
|     | (1) 27                                                                                                                                                                                                                              | (2) 25                                                                                                                    | (3) 25                                                                         | (4) 21                                       |  |  |
| 3.  | If $\alpha \neq a, \beta \neq b, \gamma \neq c$ and                                                                                                                                                                                 | $\begin{vmatrix} \alpha & b & c \\ a & \beta & c \\ a & b & \gamma \end{vmatrix} = 0, \text{ then } \frac{a}{\alpha - a}$ | $\frac{b}{\alpha} + \frac{b}{\beta-b} + \frac{\gamma}{\gamma-c}$ is equal to : |                                              |  |  |
|     | (1) 2                                                                                                                                                                                                                               | (2) 3                                                                                                                     | (3) 0                                                                          | (4) 1                                        |  |  |
| 4.  | In an increasing geomet                                                                                                                                                                                                             | ric progression ol positiv                                                                                                | e terms, the sum of the s                                                      | second and sixth terms is $\frac{70}{3}$ and |  |  |
|     | the product of the third a                                                                                                                                                                                                          | and fifth terms is 49. Ther                                                                                               | n the sum of the 4 <sup>th</sup> , 6 <sup>th</sup> a                           | and 8 <sup>th</sup> terms is :-              |  |  |
|     | (1) 96                                                                                                                                                                                                                              | (2) 78                                                                                                                    | (3) 91                                                                         | (4) 84                                       |  |  |
| 5.  | The number of ways five                                                                                                                                                                                                             | alphabets can be chose                                                                                                    | n from th <mark>e alphabets of t</mark> l                                      | ne word MATHEMATICS, where                   |  |  |
|     | the chosen alphabets ar                                                                                                                                                                                                             | e not necessarily distinct                                                                                                | , is equal to :                                                                |                                              |  |  |
|     | (1) 175                                                                                                                                                                                                                             | (2) 181                                                                                                                   | (3) 177                                                                        | (4) 179                                      |  |  |
| 6.  | The sum of all possible                                                                                                                                                                                                             | values of $\theta \in [-\pi, 2\pi]$ , fo                                                                                  | r which $\frac{1+i\cos\theta}{1-2i\cos\theta}$ is purely                       | imaginary, is equal to                       |  |  |
|     | <b>(1)</b> 2 <i>π</i>                                                                                                                                                                                                               | <b>(2)</b> 3π                                                                                                             | <b>(3)</b> 5π                                                                  | (4) 4π                                       |  |  |
| 7.  | If the system of equa                                                                                                                                                                                                               | tions $x + 4y - z = \lambda$ , $7x$                                                                                       | $\alpha + 9y + \mu z = -3,5x + y$                                              | +2z = -1 has infinitely many                 |  |  |
|     | solutions, then $(2\mu + 3\lambda)$                                                                                                                                                                                                 | ) is equal to :                                                                                                           |                                                                                |                                              |  |  |
|     | (1) 2                                                                                                                                                                                                                               | (2) -3                                                                                                                    | (3) 3                                                                          | (4) -2                                       |  |  |
| 8.  | If the shortest distance between the lines $\frac{x-\lambda}{2} = \frac{y-4}{3} = \frac{z-3}{4}$ and $\frac{x-2}{4} = \frac{y-4}{6} = \frac{z-7}{8}$ is $\frac{13}{\sqrt{29}}$ , then a value of $\lambda$ is :                     |                                                                                                                           |                                                                                |                                              |  |  |
|     | $(1) - \frac{13}{25}$                                                                                                                                                                                                               | $(2)\frac{13}{25}$                                                                                                        | (3) 1                                                                          | (4) -1                                       |  |  |
| 9.  | If the value of $\frac{3\cos 36^\circ + 5\sin 18^\circ}{5\cos 36^\circ - 3\sin 18^\circ}$ is $\frac{a\sqrt{5}-b}{c}$ , where a, b, c are natural numbers and $gcd(a, c) = 1$ , then $a + b + c$                                     |                                                                                                                           |                                                                                |                                              |  |  |
|     | is equal to :                                                                                                                                                                                                                       |                                                                                                                           |                                                                                |                                              |  |  |
|     | (1) 50                                                                                                                                                                                                                              | (2) 40                                                                                                                    | (3) 52                                                                         | (4) 54                                       |  |  |
| 10. | Let $y = y(x)$ be the solution curve of the differential equation secy $\frac{dy}{dx} + 2x\sin y = x^3\cos y$ , $y(1) = 0$ . Then                                                                                                   |                                                                                                                           |                                                                                |                                              |  |  |
|     | $y(\sqrt{3})$ is equal to :                                                                                                                                                                                                         |                                                                                                                           |                                                                                |                                              |  |  |
|     | $(1)\frac{\pi}{3}$                                                                                                                                                                                                                  | (2) $\frac{\pi}{6}$                                                                                                       | $(3)\frac{\pi}{4}$                                                             | $(4)\frac{\pi}{12}$                          |  |  |
|     |                                                                                                                                                                                                                                     |                                                                                                                           |                                                                                |                                              |  |  |

 
 OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

 www.competishun.com

 Mob. 8888-0000-21, 7410900901

| 11. | The area of the region in the first quadrant inside the circle $x^2 + y^2 = 8$ and outside the pnrabola $y^2 = 2x$ is equal to :                                                                                                                                                                                                       |                                                                                                                         |                                                     |                                                                                     |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
|     | $(1)\frac{\pi}{2}-\frac{1}{3}$                                                                                                                                                                                                                                                                                                         | (2) $\pi - \frac{2}{3}$                                                                                                 | $(3)\frac{\pi}{2}-\frac{2}{3}$                      | (4) $\pi - \frac{1}{3}$                                                             |  |  |  |
| 12. | If the line segment joini                                                                                                                                                                                                                                                                                                              | the line segment joining the points (5,2) and (2, a) subtends an angle $\frac{\pi}{4}$ at the origin, then the absolute |                                                     |                                                                                     |  |  |  |
|     | value of the product of a                                                                                                                                                                                                                                                                                                              | all possible values of a is                                                                                             | :                                                   |                                                                                     |  |  |  |
|     | (1) 6                                                                                                                                                                                                                                                                                                                                  | (2) 8                                                                                                                   | (3) 2                                               | (4) 4                                                                               |  |  |  |
| 13. | Let $\vec{a} = 4\hat{i} - \hat{j} + \hat{k}$ , $\vec{b} = 1$                                                                                                                                                                                                                                                                           | $1\hat{\imath} - \hat{\jmath} + \hat{k}$ and $\vec{c}$ be a vec                                                         | ctor such that $(\vec{a} + \vec{b}) \times \vec{c}$ | $\vec{c} = \vec{c} \times (-2\vec{a} + 3\vec{b}).$ If $(2\vec{a} + 3\vec{b}) \cdot$ |  |  |  |
|     | $\vec{c} = 1670$ , then $ \vec{c} ^2$ is equivalent                                                                                                                                                                                                                                                                                    | qual to :                                                                                                               |                                                     |                                                                                     |  |  |  |
|     | (1) 1627                                                                                                                                                                                                                                                                                                                               | (2) 1618                                                                                                                | (3) 1600                                            | (4) 1609                                                                            |  |  |  |
| 14. | If the function $f(x) = 2x$                                                                                                                                                                                                                                                                                                            | $x^3 - 9ax^2 + 12a^2x + 1, a$                                                                                           | > 0 has a local maximu                              | m at $x = \alpha$ and a local minimum                                               |  |  |  |
|     | $x = \alpha^2$ , then $\alpha$ and $\alpha^2$ a                                                                                                                                                                                                                                                                                        | re the roots of the equati                                                                                              | on :                                                |                                                                                     |  |  |  |
|     | $(1) x^2 - 6x + 8 = 0$                                                                                                                                                                                                                                                                                                                 | $(2) 8x^2 + 6x - 8 = 0$                                                                                                 | $(3) 8x^2 - 6x + 1 = 0$                             | $(4) x^2 + 6x + 8 = 0$                                                              |  |  |  |
| 15. | There are three bags X,                                                                                                                                                                                                                                                                                                                | Y and Z. Bag X contains                                                                                                 | 5 one-rupee coins and 4                             | five-rupee coins; Bag Y contains                                                    |  |  |  |
|     | 4 one-rupee coins and \$                                                                                                                                                                                                                                                                                                               | 5 five-rupee coins and Ba                                                                                               | ag Z contains 3 one-rupe                            | e coins and 6 five-rupee coins. A                                                   |  |  |  |
|     | bag is selected at rando                                                                                                                                                                                                                                                                                                               | om and a coin drawn froi                                                                                                | m it at random is found t                           | o be a one-rupee coin. Then the                                                     |  |  |  |
|     | probability, that it came                                                                                                                                                                                                                                                                                                              | from bag Y, is :                                                                                                        |                                                     |                                                                                     |  |  |  |
|     | $(1)\frac{1}{3}$                                                                                                                                                                                                                                                                                                                       | $(2)\frac{1}{2}$                                                                                                        | $(3)\frac{1}{4}$                                    | $(4)\frac{5}{12}$                                                                   |  |  |  |
| 16. | Let $\int_{\alpha}^{\log_e 4} \frac{dx}{\sqrt{e^x - 1}} = \frac{\pi}{6}$ . The                                                                                                                                                                                                                                                         | en $e^{lpha}$ and $e^{-lpha}$ are the roo                                                                               | ots of the equation :                               |                                                                                     |  |  |  |
|     | $(1) 2x^2 - 5x + 2 = 0$                                                                                                                                                                                                                                                                                                                | $(2) x^2 - 2x - 8 = 0$                                                                                                  | $(3) \ 2x^2 - 5x - 2 = 0$                           | $(4) x^2 + 2x - 8 = 0$                                                              |  |  |  |
| 17. | Let $f(\mathbf{x}) = \begin{cases} -a & \text{if } -a \\ \mathbf{x} + a & \text{if } 0 \end{cases}$                                                                                                                                                                                                                                    | $a \le x \le 0$<br>$< x \le a$                                                                                          |                                                     |                                                                                     |  |  |  |
|     | where $a > 0$ and $g(x) =$                                                                                                                                                                                                                                                                                                             | $(f \mathbf{x} ) -  f(\mathbf{x}) )/2.$                                                                                 |                                                     |                                                                                     |  |  |  |
|     | Then the function g: [-a                                                                                                                                                                                                                                                                                                               | $a,a] \rightarrow [-a,a]$ is                                                                                            |                                                     |                                                                                     |  |  |  |
|     | (1) neither one-one nor                                                                                                                                                                                                                                                                                                                | onto.                                                                                                                   | (2) both one-one and onto.                          |                                                                                     |  |  |  |
|     | (3) one-one.                                                                                                                                                                                                                                                                                                                           |                                                                                                                         | (4) onto                                            |                                                                                     |  |  |  |
| 18. | Let $A = \{2,3,6,8,9,11\}$ and $B = \{1,4,5,10,15\}$ Let R be a relation on $A \times B$ define by $(a,b)R(c,d)$ if and only                                                                                                                                                                                                           |                                                                                                                         |                                                     |                                                                                     |  |  |  |
|     | if 3ad – 7bc is an even i                                                                                                                                                                                                                                                                                                              | nteger. Then the relation                                                                                               | R is                                                |                                                                                     |  |  |  |
|     | (1) reflexive but not sym                                                                                                                                                                                                                                                                                                              | nmetric.                                                                                                                | (2) transitive but not symmetric.                   |                                                                                     |  |  |  |
|     | (3) reflexive and symme                                                                                                                                                                                                                                                                                                                | etric but not transitive.                                                                                               | (4) an equivalence relation.                        |                                                                                     |  |  |  |
| 19. | For $a, b > 0$ , let                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |                                                     |                                                                                     |  |  |  |
|     | $f(\mathbf{x}) = \begin{cases} \frac{\tan((a+1)\mathbf{x}) + b\tan x}{\mathbf{x}}, \ \mathbf{x} < 0\\ \frac{3}{\sqrt{a\mathbf{x} + b^2 \mathbf{x}^2} - \sqrt{a\mathbf{x}}}, \ \mathbf{x} = 0\\ \frac{\sqrt{a\mathbf{x} + b^2 \mathbf{x}^2} - \sqrt{a\mathbf{x}}}{b\sqrt{a} \mathbf{x}\sqrt{\mathbf{x}}}, \ \mathbf{x} > 0 \end{cases}$ |                                                                                                                         |                                                     |                                                                                     |  |  |  |

be a continous function at x = 0. Then  $\frac{b}{a}$  is equal to



**20.** If the term independent of x in the expansion of  $\left(\sqrt{ax^2} + \frac{1}{2x^3}\right)^{10}$  is 105, then  $a^2$  is equal to :

- **21.** Let A be the region enclosed by the parabola  $y^2 = 2x$  and the line x = 24. Then the maximum area of the rectangle inscribed in the region A is
- 22. If  $\alpha = \lim_{x \to 0^+} \left( \frac{e^{\sqrt{\tan x}} e^{\sqrt{x}}}{\sqrt{\tan x} \sqrt{x}} \right)$  and  $\beta = \lim_{x \to 0} (1 + \sin x)^{\frac{1}{2} \cot x}$  are the roots of the quadratic equation  $ax^2 + bx \sqrt{e} = 0$ , then 12  $\log_e(a + b)$  is equal to
- **23.** Let S be the focus of the hyperbola  $\frac{x^2}{3} \frac{y^2}{5} = 1$ , on the positive *x*-axis. Let *C* be the circle with its centre at  $A(\sqrt{6}, \sqrt{5})$  and passing through the point S. if 0 is the origin and SAB is a diameter of C then the square of the area of the triangle OSB is equal to –
- **24.** Let  $P(\alpha, \beta, \gamma)$  be the image of the point Q(1,6,4) in the line  $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ . Then  $2\alpha + \beta + \gamma$  is equal to
- 25. An arithmetic progression is written in the following way



The sum of all the terms of the 10<sup>th</sup> row is

- **26.** The number of distinct real roots of the equation |x + 1||x + 3| 4|x + 2| + 5 = 0, is
- 27. Let a ray of light passing through the point (3,10) reflects on the line 2x + y = 6 and the reflected ray passes through the point (7,2). If the equation of the incident ray is ax + by + 1 = 0, then  $a^2 + b^2 + 3ab$  is equal to\_.
- **28.** Let a, b, c  $\in$  N and a < b < c. Let the mean, the mean deviation about the mean and the variance of the 5 observations 9,25, a, b, c be 18,4 and  $\frac{136}{5}$ , respectively. Then 2a + b c is equal to
- **29.** Let  $\alpha |x| = |y|e^{xy-\beta}$ ,  $\alpha, \beta \in \mathbb{N}$  be the solution of the differential equation xdy ydx + xy(xdy + ydx) = 0, y(1) = 2. Then  $\alpha + \beta$  is equal to
- **30.** If  $\int \frac{1}{\sqrt[5]{(x-1)^4(x+3)^6}} dx = A \left(\frac{\alpha x-1}{\beta x+3}\right)^B + C$ , where C is the constant of integration, then the value of  $\alpha + \beta + 20$ AB is

| NTA ANSWER |       |     |     |     |      |     |      |     |        |
|------------|-------|-----|-----|-----|------|-----|------|-----|--------|
| 1.         | (2)   | 2.  | (2) | 3.  | (3)  | 4.  | (3)  | 5.  | (4)    |
| 6.         | (2)   | 7.  | (2) | 8.  | (3)  | 9.  | (3)  | 10. | (3)    |
| 11.        | (2)   | 12. | (4) | 13. | (2)  | 14. | (1)  | 15. | (1)    |
| 16.        | (1)   | 17. | (1) | 18. | (3)  | 19. | (4)  | 20. | (1)    |
| 21.        | (128) | 22. | (6) | 23. | (40) | 24. | (11) | 25. | (1505) |
| 26.        | (2)   | 27. | (1) | 28. | (33) | 29. | (4)  | 30. | (7)    |

| Compotishun             | OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 |    |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| The Power of Real Gurus | www.competishun.com                                                                                                                                    | -3 |  |
|                         | WOD. 8888-0000-21, 7410900901                                                                                                                          |    |  |