JEE-MAIN EXAM APRIL, 2024

Date: - 08-04-2024 (SHIFT-1)

MATHEMATICS

SECTION-A

- The value of $k \in \mathbb{N}$ for which the integral $I_n = \int_0^1 (1 x^k)^n dx$, $n \in \mathbb{N}$, satisfies $147I_{20} = 148I_{21}$ is : 1. (1) 10(2)8(3) 14(4)7The sum of all the solutions of the equation $(8)^{2x} - 16 \cdot (8)^{x} + 48 = 0$ is : 2. $(1) 1 + \log_6(8)$ $(2) \log_8(6)$ $(3) 1 + \log_{8}(6)$ $(4) \log_8(4)$ Let the circles $C_1: (x - \alpha)^2 + (y - \beta)^2 = r_1^2$ and $C_2: (x - 8)^2 + (y - \frac{15}{2})^2 = r_2^2$ touch each other externally 3. at the point (6,6). If the point (6,6) divides the line segment joining the centres of the circles C1 and C2 internally in the ratio 2:1, then $(\alpha + \beta) + 4(r_1^2 + r_2^2)$ equals
 - (1) 110 (2) 130 (3) 125 (4) 145

4. Let P(x, y, z) be a point in the first octant, whose projection in the xy-plane is the point Q. Let $OP = \gamma$; the angle between OQ and the positive x-axis be θ ; and the angle between OP and the positive z-axis be ϕ , where 0 is the origin. Then the distance of P from the x-axis is :

(1)
$$\gamma \sqrt{1 - \sin^2 \phi \cos^2 \theta}$$

(2) $\gamma \sqrt{1 + \cos^2 \theta \sin^2 \phi}$
(3) $\gamma \sqrt{1 - \sin^2 \theta \cos^2 \phi}$
(4) $\gamma \sqrt{1 + \cos^2 \phi \sin^2 \theta}$

5. The number of critical points of the function $f(x) = (x - 2)^{2/3}(2x + 1)$ is : (1) 2 (2) 0 (3) 1 (4) 3

- 6. Let f(x) be a positive function such that the area bounded by y = f(x), y = 0 from x = 0 to x = a > 0 is $e^{-a} + 4a^2 + a 1$. Then the differential equation, whose general solution is $y = c_1 f(x) + c_2$, where c_1 and c_2 are arbitrary constants, is :
 - (1) $(8e^{x} 1)\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = 0$ (2) $(8e^{x} + 1)\frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} = 0$ (3) $(8e^{x} + 1)\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = 0$ (4) $(8e^{x} - 1)\frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} = 0$

7. Let $f(x) = 4\cos^3 x + 3\sqrt{3}\cos^2 x - 10$. The number of points of local maxima of f in interval $(0,2\pi)$ is:

- 8. Let $A = \begin{bmatrix} 2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b \end{bmatrix}$. If $A^3 = 4A^2 A 21I$, where I is the identity matrix of order 3×3 , then 2a + 3b is equal to :
 - (1) -10 (2) -13 (3) -9 (4) -12

OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 www.competishun.com Mob. 8888-0000-21, 7410900901

9.	If the shortest distance between the lines						
	$L_1: \vec{r} = (2+\lambda)\hat{i} + (1-3\lambda)\hat{j} + (3+4\lambda)\hat{k}, \lambda \in \mathbb{R}$						
	$L_2: \vec{r} = 2(1+\mu)\hat{i} + 3(1+\mu)\hat{j} + (5+\mu)\hat{k}, \mu \in \mathbb{R}$						
	is $\frac{m}{\sqrt{n}}$, where $gcd(m, n) =$	1, then the value of ${ m m}$ +	n equals.				
	(1) 384	(2) 387	(3) 377	(4) 390			
10.	Let the sum of two posit	ive integers be 24 . If the	probability, that their pro	oduct is not less than $\frac{3}{4}$ times			
	their greatest positive pr	heir greatest positive product, is $\frac{m}{n}$, where $gcd(m, n) = 1$, then $n - m$ equals :					
	(1) 9	(2) 11	(3) 8	(4) 10			
11.	If $\sin x = -\frac{3}{5}$, where $\pi <$	$x < \frac{3\pi}{2}$, then 80(tan ² x -	$\cos x$) is equal to :				
	(1) 109	(2) 108	(3) 18	(4) 19			
12.	Let $I(x) = \int \frac{6}{\sin^2 x (1 - \cos x)^2} dx$. If $I(0) = 3$, then $I\left(\frac{\pi}{12}\right)$ is equal to :						
	(1) $\sqrt{3}$	(2) 3√3	(3) 6√3	(4) 2√3			
13.	The equations of two sid	The equations of two sides AB and AC of a triangle <i>ABC</i> are $4x + y = 14$ and $3x - 2y = 5$, respectively.					
	The point $\left(2, -\frac{4}{3}\right)$ divide	The point $\left(2, -\frac{4}{3}\right)$ divides the third side BC internally in the ratio 2:1. The equation of the side BC is :					
	(1) x - 6y - 10 = 0	(2) $x - 3y - 6 = 0$	(3) $x + 3y + 2 = 0$	(4) x + 6y + 6 = 0			
14.	Let [t] be the greatest integer less than or equal to						
	t. Let <i>A</i> be the set of all prime factors of 2310 and $f: A \to \mathbb{Z}$ be the function $f(x) = \left[\log_2 \left(x^2 + \left[\frac{x^3}{5} \right] \right) \right].$						
	The number of one-to-o	ne functions from A to the	e range of <i>f</i> is :				
	(1) 20	(2) 120	(3) 25	(4) 24			
15.	Let z be a complex num	ber such that $ z + 2 = 1$	and $\ln\left(\frac{z+1}{z+2}\right) = \frac{1}{5}$. Then t	he value of $ \operatorname{Re}(\overline{z+2}) $ is :			
	$(1)\frac{\sqrt{6}}{5}$	$(2)\frac{1+\sqrt{6}}{5}$	$(3)\frac{24}{5}$	$(4)\frac{2\sqrt{6}}{5}$			
16.	If the set $R = \{(a, b); a +$	$-5 b = 42, a, b \in \mathbb{N}$ has n	n elements and $\sum_{n=1}^{m} (1)$	$(+ i^{n!}) = x + iy$, where I = $\sqrt{-1}$,			
	then the value of $m + x + x = \frac{1}{2} \frac{1}{2$	+ y is :					
	(1) 8	(2) 12	(3) 4	(4) 5			
17.	For the function $f(x) =$ (S1) $f(x) = 0$ for only or	$(\cos x) - x + 1, x \in \mathbb{R}$, be be value of x is $[0, \pi]$	tween the following two s	statements			
	(S2) f(x) is decreasing	in $\begin{bmatrix} 0 & \frac{\pi}{2} \end{bmatrix}$ and increasing in	$\begin{bmatrix} \pi & \pi \end{bmatrix}$				
	(1) Both (S1) and (S2) are correct (2) Only (S1) is correct						
	(3) Both (S1) and (S2) a	ire incorrect	(4) Only (S2) is correct				
18.	The set of all α , for whic	h the vector $\vec{a} = \alpha t \hat{i} + 6 \hat{j}$	$-3\hat{k}$ and $\vec{b} = t\hat{i} - 2\hat{j} - $	$2\alpha t \hat{k}$ are inclined at an obtuse			
	angle for all $t \in \mathbb{R}$ is :	· · · ,	,				
	(1) [0,1)	(2) (-2,0]	$(3)\left(-\frac{4}{3},0\right]$	$(4)\left(-\frac{4}{3},1\right)$			

- **19.** Let y = y(x) be the solution of the differential equation $(1 + y^2)e^{\tan x}dx + \cos^2 x(1 + e^{2\tan x})dy = 0, y(0) = 1$. Then $y\left(\frac{\pi}{4}\right)$ is equal to : $(1)\frac{2}{e}$ $(2)\frac{1}{e^2}$ $(3)\frac{1}{e}$ $(4)\frac{2}{e^2}$
- **20.** Let $H: \frac{-x^2}{a^2} + \frac{y^2}{b^2} = 1$ be the hyperbola, whose eccentricity is $\sqrt{3}$ and the length of the latus rectum is $4\sqrt{3}$. Suppose the point $(\alpha, 6), \alpha > 0$ lies on *H*. If β is the product of the focal distances of the point $(\alpha, 6)$, then $\alpha^2 + \beta$ is equal to :
 - (1) 170 (2) 171 (3) 169 (4) 172

SECTION-B

- **21.** Let $A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$. If the sum of the diagonal elements of A^{13} is 3^n , then n is equal to
- **22.** If the orthocentre of the triangle formed by the lines 2x + 3y 1 = 0, x + 2y 1 = 0 and ax + by -1 = 0, is the centroid of another triangle, whose circumecentre and orthocentre respectively are (3,4) and (-6, -8), then the value of |a b| is
- **23.** Three balls are drawn at random from a bag containing 5 blue and 4 yellow balls. Let the random variables X and Y respectively denote the number of blue and Yellow balls. If \bar{X} and \bar{Y} are the means of X and Y respectively, then $7\bar{X} + 4\bar{Y}$ is equal to
- 24. The number of 3-digit numbers, formed using the digits 2, 3, 4, 5 and 7, when the repetition of digits is not allowed, and which are not divisible by 3, is equal to
- **25.** Let the positive integers be written in the form :

If the k^{th} row contains exactly k numbers for every natural number k, then the row in which the number 5310 will be, is____.

26. If the range of $f(\theta) = \frac{\sin^4 \theta + 3\cos^2 \theta}{\sin^4 \theta + \cos^2 \theta}$, $\theta \in \mathbb{R}$ is $[\alpha, \beta]$, then the sum of the infinite G.P., whose first term is 64 and the common ratio is $\frac{\alpha}{\beta}$, is equal to

27. Let
$$\alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1)^n C_r$$
 and $\beta = \left(\sum_{r=0}^{n} \frac{n_{C_r}}{r+1}\right) + \frac{1}{n+1}$. If $140 < \frac{2\alpha}{\beta} < 281$, then the value of n is

28. Let $\vec{a} = 9\hat{\imath} - 13\hat{\jmath} + 25\hat{k}$, $\vec{b} = 3\hat{\imath} + 7\hat{\jmath} - 13\hat{k}$ and $\vec{c} = 17\hat{\imath} - 2\hat{\jmath} + \hat{k}$ be three given vectros. If \vec{r} is a vector such that $\vec{r} \times \vec{a} = (\vec{b} + \vec{c}) \times \vec{a}$ and $\vec{r} \cdot (\vec{b} - \vec{c}) = 0$, then $\frac{|593\vec{r} + 67\vec{a}|^2}{(593)^2}$ is equal to

CO

29. Let the area of the region enclosed by the curve $y = \min\{\sin x, \cos x\}$ and the x-axis between $x = -\pi$ to

 $x = \pi$ be A. Then A^2 is equal to

30. The value of
$$\lim_{x\to 0} 2\left(\frac{1-\cos x\sqrt{\cos 2x}\sqrt[3]{\cos 3x}\dots 10}{x^2}\right)$$
 is

NTA ANSWER									
1.	(4)	2.	(3)	3.	(2)	4.	(1)	5.	(1)
6.	(3)	7.	(2)	8.	(2)	9.	(2)	10.	(4)
11.	(1)	12.	(2)	13.	(3)	14.	(2)	15.	(4)
16.	(2)	17.	(2)	18.	(3)	19.	(3)	20.	(2)
21.	(7)	22.	(16)	23.	(17)	24.	(36)	25.	(103)
26.	(96)	27.	(5)	28.	(569)	29.	(16)	30.	(55)

nnotishun	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020				
The Power of Real Gurus	www.competishun.com	4			
	Mob. 8888-0000-21, 7410900901	-4			