JEE-MAIN EXAM APRIL, 2024

Date: - 08-04-2024 (SHIFT-1)

PHYSICS

SECTION-A

1. Three bodies A, B and C have equal kinetic energies and their masses are 400 g, 1.2 kg and 1.6 kg respectively. The ratio of their linear momenta is : (2) 1: $\sqrt{3}$: $\sqrt{2}$ (3) $\sqrt{2}:\sqrt{3}:1$ (4) $\sqrt{3}:\sqrt{2}:1$ (1) 1: $\sqrt{3}$: 2 Average force exerted on a non-reflecting surface at normal incidence is 2.4×10⁻⁴ N . If 360 W/cm² is 2. the light energy flux during span of 1 hour 30 minutes. Then the area of the surface is: (1) 0.2 m² (2) 0.02 m² (3) 20 m² (4) 0.1 m² 3. A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is: (Assume h = 6.63×10^{-34} J s, m_e = 9.0×10^{-31} kg and m_p = 1836 times m_e) (2) $1:\frac{1}{1836}$ (3) $1:\frac{1}{\sqrt{1836}}$ (4) $1:\sqrt{1836}$ (1) 1 : 18364. A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature (27°C). The ratio of specific heat of gases at constant volume respectively is: $(1) \frac{7}{5}$ (3) $\frac{3}{5}$ (4) $\frac{5}{3}$ (2) $\frac{3}{2}$ 5. In an expression a × 10^b : (2) b is order of magnitude for $a \le 5$ (1) a is order of magnitude for $b \le 5$ (3) b is order of magnitude for $5 < a \le 10$ (4) *b* is order of magnitude for $a \ge 5$ In the given circuit, the terminal potential difference of the cell is : 6. 4Ω 4Ω (1) 2 V (2) 4 V (3) 1.5 V (4) 3 V 7. Binding energy of a certain nucleus is 18 × 10⁸ J. How much is the difference between total mass of all the nucleons and nuclear mass of the given nucleus: (1) 0.2 µg (2) 20 µg (3) 2µg (4) 10µg 8. Paramagnetic substances: A. align themselves along the directions of external magnetic field. B. attract strongly towards external magnetic field. C. has susceptibility little more than zero.

D. move from a region of strong magnetic field to weak magnetic field.

	Choose	the	most	appropriate	answer	from	the	options	given	below:
	(1) A, B, C	, D	(2)	B, D Only	(3) A, E	3, C Only		(4) A, C Onl	ly	
9.	A clock ha	s 75 cm,	60 cm I	ong second ha	nd and minu	te hand re	spectiv	vely. In 30 m	inutes dur	ation the
	tip of second hand will travel x distance more than the tip of minute hand. The value of x in meter nearly (Take π = 3.14) :									
	(1) 139.4		(2)	140.5	(3) 220	.0		(4) 118.9		

Young's modulus is determined by the equation given by $Y = 49000 \frac{m}{\ell} \frac{dyne}{cm^2}$ where M is the mass and 10.

l is the extension of wire used in the experiment. Now error in Young modules (Y) is estimated by taking data from M – ℓ plot in graph paper. The smallest scale divisions are 5g and 0.02 cm along load axis and extension axis respectively. If the value of M and ℓ are 500g and 2 cm respectively then percentage error of Y is :

- (1) 0.2% (2) 0.02% (3) 2% (4) 0.5%
- 11. Two different adiabatic paths for the same gas intersect two isothermal curves as shown in P-V diagram. The relation between the ratio $\frac{V_a}{V_d}$ and the ratio $\frac{V_b}{V_c}$ is:

Two planets A and B having masses m_1 and m_2 move around the sun in circular orbits of r_1 and r_2 12.

radii respectively. If angular momentum of A is L and that of B is 3L, the ratio of time period $\left(\frac{T_A}{T_P}\right)$ is:

$$(1)\left(\frac{r_2}{r_1}\right)^{\frac{3}{2}} \qquad (2)\left(\frac{r_1}{r_2}\right)^3 \qquad (3) \frac{1}{27}\left(\frac{m_2}{m_1}\right)^3 \qquad (4) \ 27\left(\frac{m_1}{m_2}\right)^3$$

13. A LCR circuit is at resonance for a capacitor C, inductance L and resistance R. Now the value of resistance is halved keeping all other parameters same. The current amplitude at resonance will be now:

(1) Zero (2) double (3) same (4) halved OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle compet

chun	10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020							
Shun	www.competishun.com	2						
and of Real Cords	Mob. 8888-0000-21, 7410900901	-2						

14. The output Y of following circuit for given inputs is :

15. Two charged conducting spheres of radii a and b are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:

(1)
$$\sqrt{ab}$$
 (2) a b (3) $\frac{a}{b}$ (4) $\frac{b}{a}$

16. Correct Bernoulli's equation is (symbols have their usual meaning) :

(1)
$$P + mgh + \frac{1}{2}mv^2 = \text{constant}$$

(2) $P + \rho gh + \frac{1}{2}\rho v^2 = \text{constant}$
(3) $P + \rho gh + \rho v^2 = \text{constant}$
(4) $P + \frac{1}{2}\rho gh + \frac{1}{2}\rho v^2 = \text{constant}$

- 17. A player caught a cricket ball of mass 150g moving at a speed of 20 m/s. If the catching process is completed in 0.1 s, the magnitude of force exerted by the ball on the hand of the player is:
 (1) 150 N
 (2) 3 N
 (3) 30 N
 (4) 300 N
- **18.** A stationary particle breaks into two parts of masses m_A and m_B which move with velocities v_A and v_B respectively. The ratio of their kinetic energies $(K_B : K_A)$ is :

(1)
$$v_B : v_A$$
 (2) $m_B : m_A$ (3) $m_B v_B : m_A v_A$ (4) 1: 1

19. Critical angle of incidence for a pair of optical media is 45°. The refractive indices of first and second media are in the ratio:

(1)
$$\sqrt{2}:1$$
 (2) 1:2 (3) $1:\sqrt{2}$ (4) 2:1

20. The diameter of a sphere is measured using a vernier caliper whose 9 divisions of main scale are equal to 10 divisions of vernier scale. The shortest division on the main scale is equal to 1 mm. The main scale reading is 2 cm and second division of vernier scale coincides with a division on main scale. If mass of the sphere is 8.635 g, the density of the sphere is:

(1) 2.5 g/cm^3 (2) 1.7 g/cm^3

(3) 2.2 g/cm³

(4) 2.0 g/cm³

SECTION-B

21. A uniform thin metal plate of mass 10 kg with dimensions is shown. The ratio of x and y coordinates

of center of mass of plate in $\frac{n}{9}$. The value of *n* is _____.

- An electron with kinetic energy 5eV enters a region of uniform magnetic field of 3μT perpendicular to its direction. An electric field E is applied perpendicular to the direction of velocity and magnetic field. The value of E, so that electron moves along the same path, is _____ NC⁻¹. (Given, mass of electron = 9 × 10⁻³¹ kg, electric charge = 1.6 × 10⁻¹⁹C)
- **23.** A square loop PQRS having 10 turns, area 3.6×10^{-3} m² and resistance 100Ω is slowly and uniformly being pulled out of a uniform magnetic field of magnitude B= 0.5 T as shown. Work done in pulling the loop out of the field in 1.0 s is $\times 10^{-6}$ J.

- **24.** Resistance of a wire at 0°C, 100°C and t°C is found to be 10Ω , 10.2Ω and 10.95Ω respectively. The temperature *t* in Kelvin scale is ______.
- 25. An electric field, $\vec{E} = \frac{2\hat{i} + 6\hat{j} + 8\hat{k}}{\sqrt{6}}$ passes through the surface of $4m^2$ area having unit vector $(2\hat{i} + \hat{i} + \hat{k})$

$$\hat{n} = \left(\frac{2i+j+k}{\sqrt{6}}\right)$$
. The electric flux for that surface is _____Vm.

- **26.** A liquid column of height 0.04 cm balances excess pressure of soap bubble of certain radius. If density of liquid is 8×10^3 kg m⁻³ and surface tension of soap solution is 0.28 Nm⁻¹, then diameter of the soap bubble is _____cm. (if g = 10 ms⁻²)
- 27. A closed and an open organ pipe have same lengths. If the ratio of frequencies of their seventh overtones is $\left(\frac{a-1}{a}\right)$ then the value of a is_____.
- **28.** Three vectors $\overrightarrow{OP}, \overrightarrow{OQ}$, and \overrightarrow{OR} each of magnitude A are acting as shown in figure. The resultant of the three vectors is $A\sqrt{x}$. The value of x is

29. A parallel beam of monochromatic light of wavelength 600 nm passes through single slit of 0.4 mm width. Angular divergence corresponding to second order minima would be × 10⁻³ rad.

30. In an alpha particle scattering experiment distance of closest approach for the α particle is 4.5×10^{-14} m. If target nucleus has atomic number 80, then maximum velocity of α -particle is _____ ×10⁵ m/s approximately. ($\frac{1}{4\pi \epsilon_0} = 9 \times 10^9$ SI unit, mass of α particle = 6.72×10^{-27} kg)

	NTA ANSWERS												
1.	(1)	2.	(2)	3.	(1)	4.	(3)	5.	(2)	6.	(1)	7.	(2)
8.	(4)	9.	(1)	10.	(3)	11.	(3)	12.	(3)	13.	(2)	14.	(3)
15.	(3)	16.	(2)	17.	(3)	18.	(1)	19.	(1)	20.	(4)	21.	(15)
22.	(4)	23.	(3)	24.	(748)	25.	(12)	26.	(7)	27.	(16)	28.	(3)
29.	(6)	30.	(156)										

