JEE-MAIN EXAM APRIL, 2024

Date: - 09-04-2024 (SHIFT-2)

MATHEMATICS

SECTION-A

1.	$\lim_{x \to 0} \frac{e^{-(1+2x)^{\frac{1}{2x}}}}{x}$ is equal to :								
	(1) e	(2) $\frac{-2}{e}$		(3) 0			(4) e-e e ²		
2.	Consider the line	L passing through th	e points (1	,2,3) and	d (2,3	,5). Tł	The distance of the point $\left(\frac{11}{3}, \frac{11}{3}, \frac{19}{3}\right)$		
	from the line L along the line $\frac{3x-11}{2} = \frac{3y-11}{1} = \frac{3z-19}{2}$ is equal to :								
	(1) 3	(2) 5		(3) 4			(4) 6		
3.	Let $\int_0^x \sqrt{1 - (y'(t))}$	$\overline{)^2}$ dt = $\int_0^x y(t) dt, 0 \le x$	$x \le 3, y \ge 0$, y(0) =	0. Th	en at x	x = 2, y'' + y + 1 is equal to :		
	(1) 1	(2) 2					(4) 1/2		
4.	Let z be a complex number such that the real part of $\frac{z-2i}{z+2i}$ is zero. Then, the maximum value of $ z - (6 + z) = 1$					n, the maximum value of $ z - (6 +$			
	8i) is equal to :								
	(1) 12	(2)∞		(3) 10			(4) 8		
5.	The area (in squa	re units) of the region	enclosed I	by the el	lipse :	$x^{2} + 3$	y ² = 18 in the first quadrant below		
	the line $y = x$ is :								
	$(1)\sqrt{3}\pi + \frac{3}{4}$	(2) $\sqrt{3}\pi$		(3) √ <u>3</u> π -	$-\frac{3}{4}$		(4) $\sqrt{3}\pi + 1$		
6.	Let the foci of a h	yperbola H coincide v	vith the foci	of the e	ellipse	$E:\frac{(x-1)}{100}$	$\frac{(y-1)^2}{10} + \frac{(y-1)^2}{75} = 1$ and the eccentricity		
	of the hyperbola H be the reciprocal of the eccentricity of the ellipse E. If the length of the transverse axis								
	of H is α and the length of its conjugate axis is β , then $3\alpha^2 + 2\beta^2$ is equal to :								
	(1) 242	(2) 225		(3) 237			(4) 205		
7.	Two vertices of a triangle ABC are $A(3, -1)$ and $B(-2,3)$, and its orthocentre is $P(1,1)$. If the coordinates								
	of the point C are (α, β) and the centre of the circle circumscribing the triangle PAB is (h, k) , then the value								
	of $(\alpha + \beta) + 2(h + \beta)$	k) equals :							
_	(1) 51	(2) 81		(3) 5			(4) 15		
8.	If the variance of t	If the variance of the frequency distribution is 160, then the value of $c \in N$ is							
		x c	2c 3c	4c	5c	6c			
		<i>f</i> 2	1 1	1	1	1			
	(1) 5	(2) 8		(3) 7			(4) 6		

(1) 5 (2) 8 (3) 7

OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 www.competishun.com Mob. 8888-0000-21, 7410900901 -1

Let the range of the function $f(x) = \frac{1}{2 + \sin 3x + \cos 3x}$, $x \in IR$ be [a, b]. If α and β are respectively the A.M. and 9. the G.M. of a and b, then $\frac{\alpha}{\beta}$ is equal to : $(1)\sqrt{2}$ (3) $\sqrt{\pi}$ (2)2(4) π 10. Between the following two statements : **Statement-I**: Let $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} - \hat{k}$. Then the vector \vec{r} satisfying $\vec{a} \times \vec{r} = \vec{a} \times \vec{b}$ and $\vec{a} \cdot \vec{r} = \vec{a} \cdot \vec{c}$ 0 is of magnitude $\sqrt{10}$. **Statement-II** : In a triangle ABC, $\cos 2 A + \cos 2 B + \cos 2C \ge -\frac{3}{2}$. (1) Both Statement-I and Statement-II are incorrect (2) Statement-I is incorrect but Statement-II is correct (3) Both Statement-I and Statement-II are correct (4) Statement-I is correct but Statement-II is incorrect $\lim_{x \to \frac{x}{2}} \left(\frac{\int_{x^3}^{(\pi/2)^3} \left(\sin(2t^{1/3}) + \cos(t^{1/3}) \right) dt}{\left(x - \frac{\pi}{2} \right)^2} \right) \text{ is equal to :}$ 11. $(1)\frac{9\pi^2}{2}$ $(2)\frac{11\pi^2}{10}$ $(3)\frac{3\pi^2}{2}$ $(4) \frac{5\pi^2}{2}$ The sum of the coefficient of $x^{2/3}$ and $x^{-2/5}$ in the binomial expansion of $\left(x^{2/3} + \frac{1}{2}x^{-2/5}\right)^9$ is : 12. (2) 69/16(3) 63/16(1) 21/4(4) 19/4 Let $B = \begin{bmatrix} 1 & 3 \\ 1 & 5 \end{bmatrix}$ and A be a 2 × 2 matrix such that $AB^{-1} = A^{-1}$. If $BCB^{-1} = A$ and $C^4 + \alpha C^2 + \beta I = 0$, then 13. $2\beta - \alpha$ is equal to : (1) 16(2) 2(3)8(4) 10If $\log_e y = 3\sin^{-1} x$, then $(1 - x)^2 y'' - xy'$ at $x = \frac{1}{2}$ is equal to : 14. (2) $3e^{\pi/6}$ (1) $9e^{\pi/6}$ (3) $3e^{\pi/2}$ (4) $9e^{\pi/2}$ The integral $\int_{1/4}^{3/4} \cos\left(2\cot^{-1}\sqrt{\frac{1-x}{1+x}}\right) dx$ is equal to: 15. (1) - 1/2(2) 1/4 (3) 1/2 (4) - 1/4Let *a*, ar, ar^{2^2}be an infinite G.P. If $\sum_{n=0}^{\infty} ar^n = 57$ and $\sum_{n=0}^{\infty} a^3 r^{3n} = 9747$, then a + 18r is equal to : 16. (1) 27(2) 46(3) 38 (4)3117. If an unbiased dice is rolled thrice, then the probability of getting a greater number in the ith roll than the number obtained in the $(i - 1)^{\text{th}}$ roll, i = 2,3, is equal to : (2) 2/54 (1) 3/54(3) 5/54 (4) 1/54The value of the integral $\int_{-1}^{2} \log_e (x + \sqrt{x^2 + 1}) dx$ is : 18. $(1)\sqrt{5} - \sqrt{2} + \log_{e}\left(\frac{9+4\sqrt{5}}{1+\sqrt{2}}\right)$ (2) $\sqrt{2} - \sqrt{5} + \log_e \left(\frac{9+4\sqrt{5}}{1+\sqrt{2}} \right)$ (3) $\sqrt{5} - \sqrt{2} + \log_e \left(\frac{7 + 4\sqrt{5}}{1 + \sqrt{2}} \right)$ (4) $\sqrt{2} - \sqrt{5} + \log_e \left(\frac{7 + 4\sqrt{5}}{1 + \sqrt{2}} \right)$ Let $\alpha, \beta; \alpha > \beta$, be the roots of the equation $x^2 - \sqrt{2}x - \sqrt{3} = 0$. Let $P_n = \alpha^n - \beta^n, n \in N$. Then $(11\sqrt{3} - \sqrt{2}x - \sqrt{3}) = 0$. 19. $10\sqrt{2}$)P₁₀ + $(11\sqrt{2} + 10)$ P₁₁ - 11P₁₂ is equal to : (1) $10\sqrt{2}P_{9}$ (2) $10\sqrt{3}P_9$ (3) $11\sqrt{2}P_{o}$ (4) $11\sqrt{3}P_{a}$ OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 competishun www.competishun.com -2 Mob. 8888-0000-21, 7410900901

20. Let a = 2î + αĵ + k̂, b = -î + k̂, c = βĵ - k̂, where α and β are integers and αβ = -6. Let the values of the ordered pair (α, β) for which the area of the parallelogram of diagonals a + b and b + c is √21/2, be (α₁, β₁) and (α₂, β₂). Then α₁² + β₁² - α₂β₂ is equal to

(1) 17
(2) 24
(3) 21
(4) 19

SECTION-B

- **21.** Consider the circle $C: x^2 + y^2 = 4$ and the parabola $P: y^2 = 8x$. If the set of all values of α , for which three chords of the circle C on three distinct lines passing through the point $(\alpha, 0)$ are bisected by the parabola *P* is the interval (p,q), then $(2q p)^2$ is equal to
- **22.** Let the set of all values of *p*, for which $f(x) = (p^2 6p + 8)(\sin^2 2x \cos^2 2x) + 2(2 p)x + 7$ does not have any critical point, be the interval (*a*, *b*). Then 16ab is equal to _____.
- **23.** For a differentiable function $f: IR \to IR$, suppose $f'(x) = 3f(x) + \alpha$, where $\alpha \in IR, f(0) = 1$ and $\lim_{x\to-\infty} f(x) = 7$. Then $9f(-\log_e 3)$ is equal to
- 24. The number of integers, between 100 and 1000 having the sum of their digits equals to 14, is
- **25.** Let $A = \{(x, y): 2x + 3y = 23, x, y \in N\}$ and $B = \{x: (x, y) \in A\}$. Then the number of one-one functions from A to B is equal to
- **26.** Let A, B and C be three points on the parabola $y^2 = 6x$ and let the line segment *AB* meet the line *L* through C parallel to the x-axis at the point D. Let M and N respectively be the feet of the perpendiculars from A and B on L. Then $\left(\frac{AM \cdot BN}{CD}\right)^2$ is equal to _____.
- 27. The square of the distance of the image of the point (6,1,5) in the line $\frac{x-1}{3} = \frac{y}{2} = \frac{z-2}{4}$, from the origin is
- **28.** If $\left(\frac{1}{\alpha+1} + \frac{1}{\alpha+2} + \dots + \frac{1}{\alpha+101}\right) \left(\frac{1}{2\cdot 1} + \frac{1}{4\cdot 3} + \frac{1}{6\cdot 5} + \dots + \frac{1}{2024\cdot 2023}\right) = \frac{1}{2024}$, then α is equal to-
- **29.** Let the inverse trigonometric functions take principal values. The number of real solutions of the equation $2\sin^{-1} x + 3\cos^{-1} x = \frac{2\pi}{r}$, is
- **30.** Consider the matrices : $A = \begin{bmatrix} 2 & -5 \\ 3 & m \end{bmatrix}$, $B = \begin{bmatrix} 20 \\ m \end{bmatrix}$ and $X = \begin{bmatrix} x \\ y \end{bmatrix}$. Let the set of all *m*, for which the system of equations AX = B has a negative solution (i.e., x < 0 and y < 0), be the interval (a, b). Then $8 \int_{a}^{b} |A| dm$ is equal to

NTA ANSWER									
1.	(1)	2.	(1)	3.	(1)	4.	(1)	5.	(2)
6.	(2)	7.	(3)	8.	(3)	9.	(1)	10.	(2)
11.	(1)	12.	(1)	13.	(4)	14.	(4)	15.	(4)
16.	(4)	17.	(3)	18.	(2)	19.	(2)	20.	(4)
21.	(80)	22.	(252)	23.	(61)	24.	(70)	25.	(24)
26.	(36)	27.	(62)	28.	(1011)	29.	(0)	30.	(450)

Co competishun	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020			
COMPENSION The Power of Real Gurus	www.competishun.com	3		
	Mob. 8888-0000-21, 7410900901	-3		