## **JEE-MAIN EXAM JANUARY, 2025**

Date: - 22-01-2025 (SHIFT-1)

## **MATHEMATICS**

## **SECTION-A**

| 1. | Let for $f(x) = 7 \tan^8$                                                                                                                          | $x+7\tan^6 x-3\tan^4 x-$                | $3\tan^2 x, \ I_1 = \int_0^{\pi/4} f(x) dx$   | $\mathrm{d}x$ and $\mathrm{I}_2 = \int_0^{\pi/4} x f(x) \mathrm{d}x$ . Then |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
|    | $7I_1 + 12I_2$ is equal to                                                                                                                         |                                         |                                               |                                                                             |  |  |  |  |  |
|    | (1) π                                                                                                                                              | (2) 2                                   | (3) 1                                         | (4) 2π                                                                      |  |  |  |  |  |
| 2. | Two balls are selected                                                                                                                             | d at random one by one y                | without replacement fron                      | n a bag containing 4 white and 6                                            |  |  |  |  |  |
|    | black balls. If the pro                                                                                                                            | bability that the first sele            | cted ball is black, given                     | that the second selected ball is                                            |  |  |  |  |  |
|    | also black, is $\frac{m}{n}$ , where $gcd(m,n) = 1$ , then $m + n$ is equal to :                                                                   |                                         |                                               |                                                                             |  |  |  |  |  |
|    | (1) 4                                                                                                                                              | (2) 14                                  | (3) 13                                        | (4) 11                                                                      |  |  |  |  |  |
| 3. | Let the foci of a hyper                                                                                                                            | bola be $(1,14)$ and $(1,-$             | -12) . If it passes th <mark>rough</mark>     | the point $(1,6)$ , then the length                                         |  |  |  |  |  |
|    | of its latus-rectum is :                                                                                                                           |                                         |                                               |                                                                             |  |  |  |  |  |
|    | (1) $\frac{25}{6}$                                                                                                                                 | (2) $\frac{288}{5}$                     | (3) $\frac{144}{5}$                           | (4) $\frac{24}{5}$                                                          |  |  |  |  |  |
| 4. | A circle $C$ of radius 2                                                                                                                           | 2 lies in the second quad               | rant and tou <mark>ches both t</mark> h       | e coordinate axes. Let $r$ be the                                           |  |  |  |  |  |
|    | radius of a circle that                                                                                                                            | has centre at the point(                | (2,5) and intersects the                      | circle $C$ at exactly two points. If                                        |  |  |  |  |  |
|    | the set of all possible                                                                                                                            | values of $r$ is the interva            | Il $(lpha,eta)$ , then $3eta\!-\!2lpha$       | is equal to :                                                               |  |  |  |  |  |
|    | (1) 12                                                                                                                                             | (2) 14                                  | (3) 15                                        | (4) 10                                                                      |  |  |  |  |  |
| 5. | The product of all solu                                                                                                                            | utions of the equation ${ m e}^{ m 5(}$ | $\log_{e^{x}}x)^{2}+3} = x^{8}, x > 0$ , is : |                                                                             |  |  |  |  |  |
|    | (1) $e^2$                                                                                                                                          | (2) e                                   | (3) $e^{8/5}$                                 | (4) $e^{6/5}$                                                               |  |  |  |  |  |
| 6. | If $\sum_{r=1}^{n} T_r = \frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}$ , then $\lim_{n \to \infty} \sum_{r=1}^{n} \left(\frac{1}{T_r}\right)$ is equal to : |                                         |                                               |                                                                             |  |  |  |  |  |
|    | (1) $\frac{1}{3}$                                                                                                                                  | (2) 1                                   | (3) 0                                         | (4) $\frac{2}{3}$                                                           |  |  |  |  |  |
| 7. | A coin is tossed three times. Let $X$ denote the number of times a tail follows a head. If $\mu$ and $\sigma^2$                                    |                                         |                                               |                                                                             |  |  |  |  |  |
|    | denote the mean and                                                                                                                                | variance of $X$ , then the              | value of $64(\mu+\sigma^2)$ is                | :                                                                           |  |  |  |  |  |
|    | (1) 64                                                                                                                                             | (2) 51                                  | (3) 48                                        | (4) 32                                                                      |  |  |  |  |  |
|    |                                                                                                                                                    | OFFICE ADDRESS . Plot numb              | or 35 Gonalnura Bynass Rd ne                  | ar Riddhi Siddhi Circle, 10 B Scheme, Triveni                               |  |  |  |  |  |

 OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni

 Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

 Mob. 7410900901, 7410900906, 7410900907, 7410900908

 www.competishun.com

|                                                                                                                                                                                                                                                                                                                                      |                                                               | 2                                                     |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|--|
| ar, Gopal Pura Mode, Jaipur, Rajastha<br>. 7410900901, 7410900906, 7410900                                                                                                                                                                                                                                                           |                                                               |                                                       |  |  |  |  |  |  |
| CE ADDRESS : Plot number 35, Gopa                                                                                                                                                                                                                                                                                                    |                                                               | hi Circle, 10 B Scheme, Triveni                       |  |  |  |  |  |  |
| 6 (3) 7                                                                                                                                                                                                                                                                                                                              | (4) 5                                                         |                                                       |  |  |  |  |  |  |
| quivalence relations on the s                                                                                                                                                                                                                                                                                                        |                                                               |                                                       |  |  |  |  |  |  |
| 312 (3) 628                                                                                                                                                                                                                                                                                                                          | (4) 526                                                       |                                                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                       |  |  |  |  |  |  |
| of increasing positive term                                                                                                                                                                                                                                                                                                          | is. If $a_1a_5 = 28$ and $a_2 +$                              | $a_4 = 29$ , then $a_6$ is                            |  |  |  |  |  |  |
| 2406 (3) 238                                                                                                                                                                                                                                                                                                                         | 4 (4) 2525                                                    |                                                       |  |  |  |  |  |  |
| $(x)f(y)$ for all $x, y \in \mathbf{R}$ .                                                                                                                                                                                                                                                                                            | Then $\sum_{{ m n=l}}^{\infty} \log_{ m e} f({ m n})$ is equa | al to :                                               |  |  |  |  |  |  |
| <b>14.</b> Let $f(x)$ be a real differentiable function such that $f(0) = 1$ and                                                                                                                                                                                                                                                     |                                                               |                                                       |  |  |  |  |  |  |
| $29 \qquad (3) 31$                                                                                                                                                                                                                                                                                                                   | (4) 41                                                        |                                                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                      |                                                               | $\alpha^2 + \beta^2$ is:                              |  |  |  |  |  |  |
| Let $z_1, z_2$ and $z_3$ be three complex numbers on the circle $ z =1$ with $\arg(z_1) = \frac{-\pi}{4}, \arg(z_2) = 0$<br>and $\arg(z_3) = \frac{\pi}{4}$ . If $ z_1\overline{z}_2 + z_2\overline{z}_3 + z_3\overline{z}_1 ^2 = \alpha + \beta\sqrt{2}, \alpha, \beta \in \mathbb{Z}$ , then the value of $\alpha^2 + \beta^2$ is: |                                                               |                                                       |  |  |  |  |  |  |
| _                                                                                                                                                                                                                                                                                                                                    |                                                               | $ -\pi $ ( ) (                                        |  |  |  |  |  |  |
| (2) 3+<br>(4) $\frac{1}{2}$ +                                                                                                                                                                                                                                                                                                        | -e                                                            |                                                       |  |  |  |  |  |  |
| (2) 3+                                                                                                                                                                                                                                                                                                                               | e                                                             |                                                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                       |  |  |  |  |  |  |
| Let $x = x(y)$ be the solution of the differential equation $y^2 dx + \left(x - \frac{1}{y}\right) dy = 0$ . If $x(1) = 1$ , then                                                                                                                                                                                                    |                                                               |                                                       |  |  |  |  |  |  |
| $3\pi - 8$ (3) $6\pi$                                                                                                                                                                                                                                                                                                                |                                                               |                                                       |  |  |  |  |  |  |
| e the circle $(x-2\sqrt{3})^2 + y^2$                                                                                                                                                                                                                                                                                                 |                                                               | abola $y^2 = 2\sqrt{3x}$ is:                          |  |  |  |  |  |  |
| 37 (3) 31                                                                                                                                                                                                                                                                                                                            | (4) 29                                                        | . –                                                   |  |  |  |  |  |  |
| $B = \left\{ \frac{m}{n} : m, n \in A, m < n \right.$                                                                                                                                                                                                                                                                                | and $gcd(m,n)=1$ . Then                                       | n(B) is equal to :                                    |  |  |  |  |  |  |
| $22\pi^2$ (3) 18/                                                                                                                                                                                                                                                                                                                    | $\tau^2$ (4) $31\pi^2$                                        |                                                       |  |  |  |  |  |  |
| $(-1x)^{2} + (\csc^{-1}x)^{2}$ is:                                                                                                                                                                                                                                                                                                   |                                                               |                                                       |  |  |  |  |  |  |
| of the inverse trigonometric                                                                                                                                                                                                                                                                                                         | ; functions, the sum of th                                    | e maximum and the                                     |  |  |  |  |  |  |
| $e^4 + 1$ (3) $e^2 + 1$                                                                                                                                                                                                                                                                                                              |                                                               |                                                       |  |  |  |  |  |  |
| $, 0 \le x \le 2 \}$ is:                                                                                                                                                                                                                                                                                                             |                                                               |                                                       |  |  |  |  |  |  |
| f'(0) = 4a and $f$ satisfies $f''(x) - 3af'(x) - f(x) = 0, a > 0$ , then the area of the region                                                                                                                                                                                                                                      |                                                               |                                                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                      |                                                               | lifferentiable function such that $f(x+y) = f(x)f(y)$ |  |  |  |  |  |  |

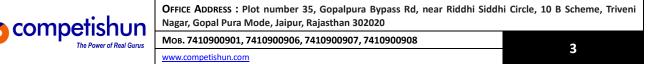
| 17. | Let $L_1: \frac{x-1}{2} = \frac{y-2}{3}$                  | $\frac{z}{4} = \frac{z-3}{4}$ and $L_2: \frac{x-3}{3}$ | $\frac{2}{4} = \frac{y-4}{4} = \frac{z-5}{5}$ be | two lines. Then which of the                   |  |  |  |  |  |  |
|-----|-----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|------------------------------------------------|--|--|--|--|--|--|
|     | following points lies or                                  | n the line of the shortest o                           | distance between $ { m L}_{ m l} $ and           | d L <sub>2</sub> ?                             |  |  |  |  |  |  |
|     | $(1)\left(-\frac{5}{3},-7,1\right)$                       | $(2)\left(\frac{8}{3},-1,\frac{1}{3}\right)$           | $(3)\left(2,3,\frac{1}{3}\right)$                | $(4)\left(\frac{14}{3},-3,\frac{22}{3}\right)$ |  |  |  |  |  |  |
| 18. | Let the triangle PQR                                      | be the image of the tr                                 | iangle with vertices $(1,$                       | 3),(3,1) and $(2,4)$ in the line               |  |  |  |  |  |  |
|     | x+2y=2 . If the cen                                       | troid of $\Delta PQR$ is the po                        | int $(lpha,eta)$ , then $15(lpha-$               | (eta) is equal to :                            |  |  |  |  |  |  |
|     | (1) 21                                                    | (2) 22                                                 | (3) 24                                           | (4) 19                                         |  |  |  |  |  |  |
| 19. | Let the parabola $y =$                                    | $x^2 + px - 3$ , meet the co                           | pordinate axes at the po                         | ints $P,Q$ and R . If the circle C             |  |  |  |  |  |  |
|     | with centre at $(-1, -1)$                                 | ) passes through the point                             | nts P, Q and $R$ , then the                      | e area of $\Delta PQR$ is :                    |  |  |  |  |  |  |
|     | (1) 5                                                     | (2) 6                                                  | (3) 7                                            | (4) 4                                          |  |  |  |  |  |  |
| 20. | From all the English a                                    | lphabets, five letters are                             | chosen and are arrange                           | d in alphabetical order. The total             |  |  |  |  |  |  |
|     | number of ways, in which the middle letter is ' M ', is : |                                                        |                                                  |                                                |  |  |  |  |  |  |
|     | (1) 14950                                                 | (2) 5148                                               | (3) 4356                                         | (4) 6084                                       |  |  |  |  |  |  |
|     |                                                           |                                                        | _                                                |                                                |  |  |  |  |  |  |

## **SECTION-B**

**21.** Let the function,

$$f(x) = \begin{cases} -3ax^2 - 2, & x < 1\\ a^2 + bx, & x \ge 1 \end{cases}$$

be differentiable for all  $x \in \mathbf{R}$ , where  $a > 1, b \in \mathbf{R}$ . If the area of the region enclosed by y = f(x) and the line y = -20 is  $\alpha + \beta \sqrt{3}, \alpha, \beta \in \mathbb{Z}$ , then the value of  $\alpha + \beta$  is \_\_\_\_.


**22.** Let  $\vec{c}$  be the projection vector of  $\vec{b} = \lambda \hat{i} + 4\hat{k}, \lambda > 0$ , on the vector  $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$ . If  $|\vec{a} + \vec{c}| = 7$ , then the area of the parallelogram formed by the vectors  $\vec{b}$  and  $\vec{c}$  is \_\_\_\_\_.

23. If 
$$\sum_{r=0}^{5} \frac{{}^{11}C_{2r+1}}{2r+2} = \frac{m}{n}$$
, gcd(m,n) = 1, then m-n is equal to \_\_\_\_\_

- **24.** Let A be a square matrix of order 3 such that det(A) = -2 and  $det(3adj(-6adj(3A))) = 2^{m+n} \cdot 3^{mn}, m > n$ . Then 4m + 2n is equal to \_\_\_\_\_.
- 25. Let  $L_1: \frac{x-1}{3} = \frac{y-1}{-1} = \frac{z+1}{0}$  and  $L_2: \frac{x-2}{2} = \frac{y}{0} = \frac{z+4}{\alpha}$ ,  $\alpha \in \mathbf{R}$ , be two lines, which intersect at the

point *B*. If *P* is the foot of perpendicular from the point A(1,1,-1) on  $L_2$ , then the value of  $26\alpha(\text{PB})^2$  is \_\_\_\_\_.

| NTA ANSWERS |     |     |      |     |     |     |     |     |     |     |     |     |     |
|-------------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1.          | (3) | 2.  | (2)  | 3.  | (2) | 4.  | (3) | 5.  | (3) | 6.  | (4) | 7.  | (3) |
| 8.          | (3) | 9.  | (2)  | 10. | (3) | 11. | (3) | 12. | (1) | 13. | (2) | 14. | (4) |
| 15.         | (1) | 16. | (4)  | 17. | (4) | 18. | (2) | 19. | (2) | 20. | (2) | 21. | 34  |
| 22.         | 16  | 23. | 2035 | 24. | 34  | 25. | 216 |     |     |     |     |     |     |
|             |     |     |      |     |     |     |     |     |     |     |     |     |     |

