JEE-MAIN EXAM JANUARY, 2025

Date: - 22-01-2025 (SHIFT-2)

MATHEMATICS

SECTION-A

1. If A and B are two events such that $P(A \cap B) = 0.1$, and $P(A \mid B)$ and $P(B \mid A)$ are the roots of

the equation $12x^2 - 7x + 1 = 0$, then the value of $\frac{P(\overline{A} \cup \overline{B})}{P(\overline{A} \cap \overline{B})}$ is :

- (1) $\frac{4}{3}$ (2) $\frac{7}{4}$ (3) $\frac{5}{3}$ (4) $\frac{9}{4}$
- 2. If $\lim_{x \to \infty} \left(\left(\frac{e}{1-e} \right) \left(\frac{1}{e} \frac{x}{1+x} \right) \right)^x = \alpha$, then the value of $\frac{\log_e \alpha}{1+\log_e \alpha}$ equals :
 - (1) e (2) e^{-2} (3) e^{2} (4) e^{-1}
- 3. Let $P(4, 4\sqrt{3})$ be a point on the parabola $y^2 = 4ax$ and PQ be a focal chord of the parabola. If M and N are the foot of perpendiculars drawn from P and Q respectively on the directrix of the parabola, then the area of the quadrilateral PQMN is equal to :

(1)
$$\frac{263\sqrt{3}}{8}$$
 (2) $17\sqrt{3}$ (3) $\frac{34\sqrt{3}}{3}$ (4) $\frac{343\sqrt{3}}{8}$

4. Let α, β, γ and δ be the coefficients of x^7, x^5, x^3 and x respectively in the expansion of $\left(x + \sqrt{x^3 - 1}\right)^5 + \left(x - \sqrt{x^3 - 1}\right)^5, x > 1$. If u and v satisfy the equations $\alpha u + \beta v = 18$, $\gamma u + \delta v = 20$, then u + v equals :

- (1) 8 (2) 3 (3) 5 (4) 4
- 5. Let $f(x) = \int_0^{x^2} \frac{t^2 8t + 15}{e^t} dt, x \in \mathbf{R}$. Then the numbers of local maximum and local minimum points of

```
f , respectively, are :
```

(1) 1 and 3 (2) 3 and 2 (3) 2 and 2 (4) 2 and 3

6. Let $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b$ and $H: \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1$. Let the distance between the foci of E and the foci of

H be $2\sqrt{3}$. If a - A = 2, and the ratio of the eccentricities of *E* and *H* is $\frac{1}{3}$, then the sum of the lengths of their latus rectums is equal to :

(1) 8 (2) 10 (3) 9 (4) 7

7.	Let \vec{a} and \vec{b} be two u	init vectors such that the	e angle between them is	$\frac{\pi}{3}$. If $\lambda \vec{a} + 2\vec{b}$ and $3\vec{a} - \lambda \vec{b}$							
	are perpendicular to each other, then the number of values of λ in $[-1,3]$ is :										
	(1) 3	(2) 1	(3) 0	(4) 2							
8.	The sum of all values of $\theta \in [0, 2\pi]$ satisfying $2\sin^2 \theta = \cos 2\theta$ and $2\cos^2 \theta = 3\sin \theta$ is										
	(1) $\frac{\pi}{2}$	(2) $\frac{5\pi}{6}$	(3) <i>π</i>	(4) 4 <i>π</i>							
9.	If $\int e^x \left(\frac{x \sin^{-1} x}{\sqrt{1 - x^2}} + \frac{\sin^{-1} x}{(1 - x^2)^2} \right) dx$	$\frac{n^{-1}x}{(-x^2)^{3/2}} + \frac{x}{1-x^2} dx = g$	(x) + C , where C is th	e constant of integration, then							
	$gigg(rac{1}{2}igg)$ equals :										
	(1) $\frac{\pi}{4}\sqrt{\frac{\mathrm{e}}{2}}$		$(2) \ \frac{\pi}{6} \sqrt{\frac{e}{2}}$								
	$(3) \ \frac{\pi}{4} \sqrt{\frac{e}{3}}$		$(4) \ \frac{\pi}{6} \sqrt{\frac{e}{3}}$								
10.	For a $3 imes 3$ matrix M , let trace (M) denote the sum of all the diagonal elements of M . Let A be a										
	3×3 matrix such that $ A = \frac{1}{2}$ and trace $(A) = 3$. If $B = adj(adj(2A))$, then the value of $ B $ + trace										
	(B) equals :										
	(1) 280	(2) 132	(3) 56	(4) 174							
11.	Let a line pass throug	gh two distinct points	P(-2,-1,3) and Q ,	and be parallel to the vector							
	$3\hat{i}+2\hat{j}+2\hat{k}$. If the dis	tance of the point Q from	m the point $R(1,3,3)$ is	5 , then the square of the area							
	of ΔPQR is equal to :										
	(1) 144	(2) 136	(3) 140	(4) 148							
12.	The area of the region e	enclosed by the curves	$y = x^2 - 4x + 4 \text{ and } y^2$	=16-8x is :							
	(1) 5		(2) $\frac{8}{3}$								
	(3) 8		(4) $\frac{4}{3}$								
13.	In a group of 3 girls an	d 4 boys, there are two	boys B_1 and B_2 . The r	number of ways, in which these							
	girls and boys can stan	id in a queue such that	all the girls stand togeth	er, all the boys stand together,							
	but B_1 and B_2 are not	adjacent to each other, is	S :								
	(1) 120	(2) 72	(3) 144	(4) 96							

Competishun	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020					
The Power of Real Gurus	Мов. 7410900901, 7410900906, 7410900907, 7410900908	2				
	www.competishun.com					

	(1) 5√2	(2) 4√3	(3) 3√5	(4) 6						
20.	The perpendicular dist	ance, of the line $\frac{x-1}{2}$ =	$\frac{y+2}{-1} = \frac{z+3}{2}$ from the	point $P(2,-10,1)$, is :						
	(1) $1 + \frac{\pi}{4}$	(2) $1 + \frac{\pi}{2}$	(3) $1 + \frac{\pi}{3}$	(4) $1 + \frac{\pi}{6}$						
	eta . Then $ lpha\!-\!eta $ equ	uals :								
19.	Let the curve $z(1+i)$	$+\overline{z}(1-i)=4, z\in \mathbb{C}$, div	ide the region $ z-3 \le 1$	into two parts of areas $lpha$ and						
	(1) 127	(2) 163	(3) 139	(4) 151						
	$1 \in f(\mathbf{A})$ is equal to :									
18.	Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 4, 9, 16\}$. Then the number of many-one functions $f : A \rightarrow B$ such that									
	(1) 4	(2) 5	(3) 6	(4) 8						
	equal to :									
17.	Suppose that the number of terms in an A.P. is $2k, k \in \mathbb{N}$. If the sum of all odd terms of the A.P. is 40,									
45	(1) 27	(2) 17	(3) 24	(4) 25						
	minimum and the maximum values of $ lpha_{ heta}^4 + eta_{ heta}^4$, then $ 16(M+m) $ equals :									
16.	Let $lpha_{ heta}$ and $eta_{ heta}$ be	the distinct roots of 2:	$x^2 + (\cos\theta)x - 1 = 0, \theta \in$	$E(0,2\pi)$. If m and M are the						
	(1) $e^{\pi/12}$	(2) $e^{\pi/6}$	(3) $e^{\pi/3}$	(4) $e^{\pi/4}$						
	with $f(0) = 1$, then f	$\left(\frac{1}{\sqrt{3}}\right)$ is equal to :								
	$(1+y^2)+(x-2e^{\tan^{-1}y})\frac{dy}{dx}=0, y\in(-\frac{\pi}{2},\frac{\pi}{2})$									
15.	If $x = f(y)$ is the solution of the differential equation									
	(1) 9	(2) 16	(3) 22	(4) 12						
	where $a,b\in {f R}$, has infinitely many solutions, then $7a+3b$ is equal to :									
	-x - 3y + bz = 2b									
	2x + 3y + az = a + 1									
	x + y + 2z = 6									
14.	If the system of linear equations :									

Let the distance between two parallel lines be 5 units and a point P lie between the lines at a unit 21. distance from one of them. An equilateral triangle PQR is formed such that Q lies on one of the parallel lines, while R lies on the other. Then $(QR)^2$ is equal to _____.

22. Let $A(6,8), B(10\cos\alpha, -10\sin\alpha)$ and $C(-10\sin\alpha, 10\cos\alpha)$, be the vertices of a triangle. If L(a,9) and G(h,k) be its orthocenter and centroid respectively, then $(5a-3h+6k+100\sin 2\alpha)$ is equal to _____.

23. If
$$\sum_{r=1}^{30} \frac{r^2 ({}^{30}C_r)^2}{{}^{30}C_{r-1}} = \alpha \times 2^{29}$$
, then α is equal to

- **24.** Let $A = \{1, 2, 3\}$. The number of relations on A, containing (1, 2) and (2, 3), which are reflexive and transitive but not symmetric, is _____.
- 25. Let y = f(x) be the solution of the differential equation $\frac{dy}{dx} + \frac{xy}{x^2 1} = \frac{x^6 + 4x}{\sqrt{1 x^2}}, -1 < x < 1$ such that

$$f(0) = 0$$
. If $6 \int_{-1/2}^{1/2} f(x) dx = 2\pi - \alpha$ then α^2 is equal to _____

NTA ANSWERS													
1.	(4)	2.	(1)	3.	(4)	4.	(3)	5.	(4)	6.	(1)	7.	(3)
8.	(3)	9.	(4)	10.	(1)	11.	(2)	12.	(2)	13.	(3)	14.	(2)
15.	(2)	16.	(4)	17.	(2)	18.	(4)	19.	(2)	20.	(3)	21.	28
22.	145	23.	465	24.	3	25.	27						

