Co competishun

The Power of Real Gurus

JEE-MAIN EXAM JANUARY, 2025

Date: - 24-01-2025 (SHIFT-1)

MATHEMATICS

SECTION-A

1.	Let circle C be the image of $x^2 + y^2 - 2x + 4y - 4 - 0$ in the line $2x - 3y + 5 = 0$ and A be the point									
	on C such that OA is parallel to x -axis and A lies on the right hand side of the centre O of C . If									
	$B(\alpha,\beta)$, with $\beta < 4$, lies on C such that the length of the arc AB is $(1/6)^{\text{th}}$ of the perimeter of C ,									
	then $\beta - \sqrt{3}\alpha$ is equal to									
	(1) $4 - \sqrt{3}$	(2) 3	(3) 4	(4) $3 + \sqrt{3}$						
2.	The area of the region $\{(x, y): x^2 + 4x + 2 \le y \le x + 2 \}$ is equal to									
	(1) 24/5	(2) 5	(3) 20/3	(4) 7						
3 .	Consider the region <i>R</i>	$= \left\{ (x, y) : x \le y \le 9 - \frac{1}{2} \right\}$	$\left[\frac{1}{3}x^2, x \ge 0\right]$. The area,	of the largest rectangle of sides						
	parallel to the coordinate axes and inscribed in R , is:									
	(1) $\frac{567}{121}$	(2) $\frac{821}{123}$	(3) $\frac{730}{119}$	(4) $\frac{625}{111}$						
4.	Let $S_n = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \dots$ upto <i>n</i> terms. If the sum of the first six terms of an A.P. with first term -p									
	and common difference p is $\sqrt{2026S_{_{2025}}}$, then the absolute difference between 20^{th} and 15^{th} terms									
	of the A.P. is									
	(1) 45	(2) 20	(3) 25	(4) 90						
5.	Let the line passing through the points (-1, 2, 1) and parallel to the line $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4}$ intersect the									
	line $\frac{x+2}{3} = \frac{y-3}{2} = \frac{z-4}{1}$ at the point P. Then the distance of P from the point Q(4, -5, 1) is									
	(1) 5√6	(2) 5\sqrt{5}	(3) 5	(4) 10						
6.	Let $\vec{\mathbf{a}} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{\mathbf{b}} = 3\hat{i} + \hat{j} - \hat{k}$ and \vec{c} be three vectors such that \vec{c} is coplanar with $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$. If the									
	vector \vec{c} is perpendicular to \vec{b} and $\vec{a}\cdot\vec{c}=5$, then $ \vec{c} $ is equal to									
	(1) 18	(2) 16	$(3) \sqrt{\frac{11}{6}}$	(4) $\frac{1}{3\sqrt{2}}$						

Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 MoB. 7410900901, 7410900906, 7410900907, 7410900908

www.competishun.com

OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni

1

7. If the system of equations

$$2x - y + z = 4$$

$$5x + \lambda y + 3z = 12$$

$$100x - 47y + \mu z = 212$$
has infinitely many solutions, then $\mu - 2\lambda$ is equal to
(1) 55 (2) 57 (3) 59 (4) 56
8. If α and β are the roots of the equation $2z^2 - 3z - 2i = 0$, where $i = \sqrt{-1}$, then
 $16 \cdot \text{Re}\left(\frac{\alpha'' + \beta'' + \alpha'' + \beta''}{\alpha'^{15} + \beta'^{15}}\right) \cdot \text{Im}\left(\frac{\alpha'' + \beta'' + \alpha'' + \beta''}{\alpha'^{15} + \beta'^{15}}\right)$ is equal to
(1) 398 (2) 441 (3) 312 (4) 409
9. Let $y = y(x)$ be the solution of the differential equation $(xy - 5x^2\sqrt{1 + x^2}) dx + (1 + x^2) dy = 0, y(0) = 0$.
Then $y(\sqrt{3})$ is equal to Options
(1) $\frac{5\sqrt{3}}{2}$ (2) $\sqrt{\frac{14}{3}}$ (3) $\sqrt{\frac{15}{2}}$ (4) $2\sqrt{2}$
10. Let $f(x) = \frac{2^{2x''} + 16}{2^{2x''} + 2^{14} + 32}$. Then the value of $8\left[f\left(\frac{1}{15}\right) + f\left(\frac{2}{15}\right) + \dots + f\left(\frac{59}{15}\right)\right]$ is equal to
(1) 102 (2) 92 (3) 118 (4) 108
11. For a statistical data x_1, x_2, \dots, x_w of 10 values, a student obtained the mean as 5.5 and $\sum_{i=1}^{15} x_i^2 = 371$.
He later found that he had noted two values in the data incorrectly as 4 and 5, instead of the correct values 6 and 8, respectively. The variance of the correct data is
(1) 5 (2) 7 (3) 9 (4) 4
12. Let the product of the focal distances of the point $\left(\sqrt{3}, \frac{1}{2}\right)$ on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (a > b)$, be $\frac{7}{4}$.
Then the absolute difference of the eccentricities of two such ellipses is
(1) $\frac{1-\sqrt{3}}{\sqrt{2}}$ (2) $\frac{3-2\sqrt{2}}{3\sqrt{2}}$ (3) $\frac{1-2\sqrt{2}}{\sqrt{3}}$ (4) $\frac{3-2\sqrt{2}}{2\sqrt{3}}$
13. Let $f: \mathbb{R} - \{0\} \rightarrow \mathbb{R}$ be a function such that $f(x) - 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2}$.
If the $\lim_{x \to 1} \left(\frac{1}{\alpha x} + f(x)\right) = \beta; \alpha, \beta \in \mathbb{R}$, then $\alpha + 2\beta$ is equal to
(1) 6 (2) 5 (3) 4 (4) 3

Order Chargenest: Plot enabors 3, 5 capalyzen Ma, near Riddhi Siddhi Circle, 10 is Scheme, Theorem 1, 2000000, 740000000, 740000000

www.competishun.com

14. Let the lines
$$3x - 4y - \alpha = 0, 8x - 11y - 33 = 0, and $2x - 3y + \lambda = 0$ be concurrent. If the image of the point (1, 2) in the line $2x - 3y + \lambda = 0$ is $\left(\frac{57}{13}, \frac{-40}{13}\right)$, then $|\alpha\lambda|$ is equal to (1) 101 (2) 91 (3) 113 (4) 84
15. Let in a ΔABC , the length of the side AC be 6, the vertex B be (1, 2, 3) and the vertices A, C lie on the line $\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$. Then the area (in sq. units) of ΔABC is:
(1) 17 (2) 21 (3) 56 (4) 42
16. The product of all the rational roots of the equation $(x^2 - 9x + 11)^2 - (x-4)(x-5) = 3$, is equal to (1) 21 (2) 28 (3) 14 (4) 7
17. For some $n \neq 10$, let the coefficients of the 5th, 6th and 7th terms in the binomial expansion of $(1+x)^{n+4}$ be in A.P. Then the largest coefficient in the expansion of $(1+x)^{n+4}$ is:
(1) 70 (2) 10 (3) 20 (4) 35
18. $\lim_{x \to 0} \operatorname{cosc} x (\sqrt{2\cos^2 x + 3\cos x} - \sqrt{\cos^2 x + \sin x + 4})$ is:
(1) $\frac{1}{2\sqrt{5}}$ (2) 0 (3) $-\frac{1}{2\sqrt{5}}$ (4) $\frac{1}{\sqrt{15}}$
19. A and B alternately throw a pair of dice. A wins if he throws a sum of 5 before *B* throws a sum of 8, and *B* wins if he throws a sum of 8 before *A* throws a sum of 5. The probability, that *A* wins if A makes the first throw, is
(1) $\frac{8}{19}$ (2) $\frac{9}{19}$ (3) $\frac{8}{17}$ (4) $\frac{9}{17}$
20. If $I(m,n) = \int_0^1 x^{m-1}(1-x)^{n-1} dx, m, n > 0$, then $I(9,14) + I(10,13)$ is
(1) $I(1, 13)$ (2) $I(9, 1)$ (3) $I(19, 27)$ (4) $I(9, 13)$$$

SECTION-B

21. Let *A* be a 3×3 matrix such that $X^T A X = O$ for all nonzero 3×1 matrices $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. If

$$A\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}1\\4\\-5\end{bmatrix}, A\begin{bmatrix}1\\2\\1\end{bmatrix} = \begin{bmatrix}0\\4\\-8\end{bmatrix}, \text{ and } \det(\operatorname{adj}(2(A+I))) = 2^{\alpha}3^{\beta}5^{\gamma}, \alpha, \beta, \gamma \in \mathbb{N} \text{, then } \alpha^{2} + \beta^{2} + \gamma^{2} \text{ is}$$

- 22. The number of 3-digit numbers, that are divisible by 2 and 3, but not divisible by 4 and 9, is
- 23. If for some $\alpha, \beta; \alpha \le \beta, \alpha + \beta = 8$ and $\sec^2(\tan^{-1}\alpha) + \csc^2(\cot^{-1}\beta) = 36$, then $\alpha^2 + \beta$ is
- 24. Let $S = \{p_1, p_2, ..., p_{10}\}$ be the set of first ten prime numbers. Let $A = S \cup P$, where P is the set of all possible products of distinct elements of S. Then the number of all ordered pairs (x, y), $x \in S$, $y \in A$, such that x divides y, is_____.
- **25.** Let f be a differentiable function such that $2(x+2)^2 f(x) 3(x+2)^2 = 10 \int_0^x (t+2)f(t)dt, x \ge 0$.

```
Then f(2) is equal to _____.
```

NTA ANSWERS													
1.	(3)	2.	(3)	3.	(1)	4.	(3)	5.	(2)	6.	(3)	7.	(2)
8.	(2)	9.	(1)	10.	(3)	11.	(2)	12.	(4)	13.	(3)	14.	(2)
15.	(2)	16.	(3)	17.	(4)	18.	(3)	19.	(2)	20.	(4)	21.	(44)
22.	(125)	23.	(14)	24.	(5120)	25.	(19)						

