JEE-MAIN EXAM JANUARY, 2025

Date: - 24-01-2025 (SHIFT-2)

MATHEMATICS

SECTION-A

1. Let [x] denote the greatest integer function, and let m and n respectively be the numbers of the points, where the function f(x) - [x] + |x-2|, -2 < x < 3, is not continuous and not differentiable. Then m+nis equal to : (1) 6 (2)7(3) 8(4)9Suppose A and B are the coefficients of 30th and 12th terms respectively in the binomial expansion of 2. $(1+x)^{2n-1}$. If 2A = 5B, then *n* is equal to : (1) 19(2) 21(3) 20(4) 22The equation of the chord, of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, whose mid-point is (3,1) is : 3. (1) 4x + 122y = 134(2) 5x + 16y = 31(4) 25x + 101y = 176(3) 48x + 25v = 169If the system of equations 4. x + 2y - 3z = 2 $2x + \lambda v + 5z = 5$ $14x + 3y + \mu z = 33$ has infinitely many solutions, then $\lambda + \mu$ is equal to : (1) 10(2) 12 (3) 13 (4) 11 The area of the region enclosed by the curves $y = e^x$, $y = |e^x - 1|$ and y -axis is : 5. (1) $1 - \log_{2} 2$ (3) $2\log_{2} 2 - 1$ (2) $\log_{2} 2$ (4) $1 + \log_{2} 2$ If $7 = 5 + \frac{1}{7}(5+\alpha) + \frac{1}{7^2}(5+2\alpha) + \frac{1}{7^3}(5+3\alpha) + \dots$, then the value of α is : 6. (1) $\frac{6}{7}$ (3) $\frac{1}{7}$ (2) 1 (4) 6The number of real solution(s) of the equation $x^2 + 3x + 2 = \min\{|x-3|, |x+2|\}$ is : 7. (1)0(4) 2(2)3(3)1OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 o competi Мов. 7410900901, 7410900906, 7410900907, 7410900908 1

www.competishun.com

8. For some a, b, let
$$f(x) = \begin{vmatrix} a + \frac{\sin x}{x} & 1 & b \\ a & 1 + \frac{\sin x}{x} & b \\ a & 1 & b + \frac{\sin x}{x} \end{vmatrix}$$
, $x \neq 0, \lim_{x \to 0} f(x) = \lambda + \mu a + \nu b$. Then $(\lambda + \mu + \nu)^2$ is equal to:
(1)9 (2) 36 (3) 16 (4) 25
9. Let $\Lambda = \begin{bmatrix} a_y \end{bmatrix}$ be a square matrix of order 2 with entries either 0 or 1. Let E be the event that A is an invertible matrix. Then the probability P(E) is:
(1) $\frac{5}{8}$ (2) $\frac{3}{16}$ (3) $\frac{1}{8}$ (4) $\frac{3}{8}$
10. Let $A = \left\{ x \in (0, \pi) - \left\{ \frac{\pi}{2} \right\}$; $\log_{(2\pi)} |\sin x| + \log_{(2\pi)} |\cos x| = 2 \right\}$ and $B = \left\{ x \ge 0: \sqrt{x} (\sqrt{x} - 4) - 3 | \sqrt{x} - 2 | + 6 = 0 \right\}$. Then $n(A \cup B)$ is equal to:
(1) 4 (2) 2 (3) 6 (4) 8
11. Let $\overline{a} = 3i - j + 2k$, $\overline{b} = \overline{a} \times (i - 2k)$ and $\overline{c} = b \times k$. Then the projection of $\overline{c} - 2j$ on \overline{a} is:
(1) $2\sqrt{7}$ (2) $\sqrt{14}$ (3) $3\sqrt{7}$ (4) $2\sqrt{14}$
12. The function $f: (-\infty, \infty) \to (-\infty, 1)$, defined by $f(x) = \frac{2^2 - 2^{-x}}{2^2 + 2^{-x}}$ is:
(1) Both one-one and onto (2) Onto but not one-one
(3) Neither one-one nor onto (4) One-one but not onto
13. If the equation of the parabola with vertex $\sqrt{\left(\frac{3}{2},3\right)}$ and the directrix $x + 2y = 0$ is
 $ax^2 + \beta y^2 - \gamma xy - 30x - 60y + 225 = 0$, then $a + \beta + \gamma$ is equal to:
(1) 9 (2) 7 (3) 6 (4) 8
14. Let the position vectors of the orthocenter and the circumcenter of the triangle are $\frac{\overline{p} + \overline{q} + \overline{r}}{4}$ and $a\overline{p} + \beta \overline{q} + \gamma \overline{r}$ respectively, then $\alpha + 2\beta + 5\gamma$ is equal to:
(1) 3 (2) 6 (3) 1 (4) 4

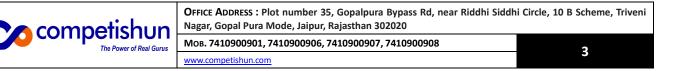
competishun The Power of Real Gurus	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020					
	Мов. 7410900901, 7410900906, 7410900907, 7410900908	2				
	www.competishun.com	2				

MATHE	MATICS			24-01-25 (EVENING SESSION)						
15.	Group A consists of 7 b	ooys and 3 girls, while gro	oup B consists of 6 boys a	and 5 girls. The number of ways,						
	4 boys and 4 girls can	be invited for a picnic if 5	of them must be from g	roup A and the remaining 3 from						
	group B, is equal to :									
	(1) 9100	(2) 8925	(3) 8750	(4) 8575						
16.	Let (2,3) be the largest open interval in which the function $f(x) = 2\log_e(x-2) - x^2 + ax + 1$ is strictly									
	increasing and (b, c) be the largest open interval, in which the function $g(x) = (x-1)^3 (x+2-a)^2$ is									
	strictly decreasing. Then 100(a + b - c) is equal to :									
	(1) 420	(2) 360	(3) 160	(4) 280						
17.	If $lpha > eta > \gamma > 0$, then	n the expression								
	$\cot^{-1}\left\{\beta + \frac{\left(1+\beta^2\right)}{\left(\alpha-\beta\right)}\right\}$	$+\cot^{-1}\left\{\gamma+\frac{(1+\gamma^2)}{(\beta-\gamma)}\right\}+$	$\cot^{-1}\left\{\alpha + \frac{\left(1 + \alpha^2\right)}{\left(\gamma - \alpha\right)}\right\} \text{ is }$	equal to :						
	(1) $\frac{\pi}{2} - (\alpha + \beta + \gamma)$	(2) 0	(3) <i>π</i>	(4) 3 <i>π</i>						
18.	In an arithmetic progre	ssion, if $S_{40}{=}1030$ and	$S_{12}=57$, then $S_{30}-S_{30}$	$_{10}$ is equal to :						
	(1) 505	(2) 515	(3) 510	(4) 525						
19.	Let the points $\left(\frac{11}{2},\alpha\right)$	lie on or inside the triang	gle with sides $x + y = 11$	x+2y=16 and $2x+3y=29$						
	. Then the product of th	ne smallest and the large	st values of α is equal t	to :						
	(1) 22	(2) 55	(3) 44	(4) <mark>33</mark>						
20.	Let $f:(0,\infty) \to \mathbf{R}$ b	e a function which is di	fferentia <mark>ble at all points</mark>	of its domain and satisfies the						
	condition $x^2 f'(x) = 2$	xf(x) + 3, with $f(1) = 4$. Then $2f(2)$ is equal	to :						
	(1) 19	(2) 39	(3) 29	(4) 23						

24-01-25 (EVENING SESSION)

SECTION-B

21. Let P be the image of the point Q(7,-2,5) in the line L: $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4}$ and R(5,p,q) be a point


on L. Then the square of the area of ΔPQR is _____.

MATHEMATICS

22. If
$$\int \frac{2x^2 + 5x + 9}{\sqrt{x^2 + x + 1}} dx = x\sqrt{x^2 + x + 1} + \alpha\sqrt{x^2 + x + 1} + \beta \log_e \left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C$$
, where C is the

constant of integration, then $\alpha + 2\beta$ is equal to _____.

23. Number of functions $f : \{1, 2, ..., 100\} \rightarrow \{0, 1\}$, that assign 1 to exactly one of the positive integers less than or equal to 98, is equal to ______.

Compet

24. Let $H_1: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $H_2: -\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$ be two hyperbolas having length of latus rectums $15\sqrt{2}$

and $12\sqrt{5}$ respectively. Let their eccentricities be $e_1 = \sqrt{\frac{5}{2}}$ and e_2 respectively. If the product of the lengths of their transverse axes is $100\sqrt{10}$, then $25e_2^2$ is equal to _____.

25. Let y = y(x) be the solution of the differential equation $2\cos x \frac{dy}{dx} = \sin 2x - 4y \sin x, x \in \left(0, \frac{\pi}{2}\right)$. If

$$y\left(\frac{\pi}{3}\right) = 0$$
, then $y'\left(\frac{\pi}{4}\right) + y\left(\frac{\pi}{4}\right)$ is equal to _____

NTA ANSWERS													
1.	(3)	2.	(2)	3.	(3)	4.	(2)	5.	(1)	6.	(4)	7.	(4)
8.	(3)	9.	(4)	10.	(4)	11.	(4)	12.	(4)	13.	(1)	14.	(1)
15.	(2)	16.	(2)	17.	(3)	18.	(2)	19.	(4)	20.	(2)	21.	(957)
22.	(16)	23.	(392)	24.	(55)	25.	(1)						

OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 MOB. 7410900901, 7410900906, 7410900907, 7410900908 www.competishun.com