1

4.

JEE-MAIN EXAM JANUARY, 2024

Date: - 29-01-2024 (SHIFT-1)

PHYSICS

SECTION-A

In the given circuit, the breakdown voltage of the Zener diode is 3.0 V. What is the value of I_z ? 1.

www.competishun.com

PHYS	SICS			29-01-2024 (MORNING SESSION)						
7.	The potential energy function (in J) of a particle in a region of space is given as $U = (2x^2 + 3y^3 + 2z)$.									
	Here x, y and z are in meter. The magnitude of x - component of force (in N) acting on the particle at									
	point P(1,2,3)m is :									
	(1) 2 (2) 6	(3) 4	(4) 8						
8.	The resistance $R = \frac{V}{I}$ where $V = (200 \pm 5)V$ and $I = (20 \pm 0.2)A$, the percentage error in the									
	measurement of R is :									
	(1) 3.5% (2) 7%	(3) 3%	(4) 5.5%						
9.	A block of mass 100 kg slides over a distance of 10 m on a horizontal surface. If the co-efficient									
	friction between the surfaces is 0.4 , then the work done against friction (in J) is :									
	(1) 4200 (2) 3900	(3) 4000	(4) 4500						
10.	Match List I with List II									
	List I List II									
	A. $\overrightarrow{A} \overrightarrow{D} \overrightarrow{H} \cdots \overrightarrow{D} \overrightarrow{d}$	$\phi_{\rm E}$ I. Gauss'	_							
	$\Psi \mathbf{B}.\mathbf{dI} = \mu_0 1_c + \mu_0 \varepsilon_0 - \frac{1}{2}$	lt law for								
		electricity	_							
	B. $\oint \vec{E} \cdot \vec{dl} = \frac{d\phi_B}{d\theta_B}$	II. Gauss'								
	J dt	law for		_						
		III Faraday								
	$\oint \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$	law								
	$\mathbf{D} = \mathbf{f} \mathbf{\overline{D}} \mathbf{\overline{D}}$	IV Ampere –								
	Ψ B.dA = 0	Maxwell								
		law								
	Chose the correct answer	from the options give								
11	(1) A-IV, B-I, C-III, D-II (2) A-II, B-III, C-I, D-IV (3) A-IV, B-III, C-I, D-II (4) A-I, B-II, C-III, D-IV									
•••	in the radius of curvature of the path of two particles of same mass are in the ratio 3:4, then in order to									
	the constant centripetar force, their velocities will be in the ratio of:									
	(1) √3:2 (2) 1:√3	(4) 2:√3							
12.	A galvanometer having coil resistance 10Ω shows a full scale deflection for a current of 3 mA. For it to									
	measure a current of 8 A, 1	he value of the shur	nt should be:	2						
	(1) $3 \times 10^{-3} \Omega$ (2)	$) 4.85 \times 10^{-3} \Omega$	(3) $3.75 \times 10^{-3} \Omega$	(4) $2.75 \times 10^{-3} \Omega$						
13. The de-Broglie wavelength of an electron is the same as that of a photon. If velocity of ele										
	of the velocity of light, then the ratio of K.E. of electron and K.E. of photon will be:									
	$(1)\frac{1}{1}$ (2)	$\frac{1}{8}$	(3) $\frac{8}{1}$	(4) $\frac{1}{4}$						
14.	The deflection in moving coil galvanometer falls from 25 divisions to 5 division when a shunt of 24Ω is									
	applied. The resistance of galvanometer coil will be :									
	(1) 12Ω (2) 96Ω	(3) 48Ω	(4) 100Ω						
15.	A biconvex lens of refractive index 1.5 has a focal length of 20 cm in air. Its focal length when immerse									
	in a liquid of refractive inde	dex 1.6 will be:								
	(1) - 16 cm (2)) –160 cm	(3) +160 cm	(4) +16 cm						
		FFICE ADDRESS : Plot	number 35. Gopalpura Bv	pass Rd, near Riddhi Siddhi Circle. 10 B						
C	s competishun 🛓	cheme, Triveni Nagar, (Sopal Pura Mode, Jaipur, R	ajasthan 302020						
	The Power of Real Gurus	OB. 7410900901, 741090	00906, 7410900907, 7410900	2						
	w									

16. A thermodynamic system is taken from an original state A to an intermediate state B by a linear process as shown in the figure. It's volume is then reduced to the original value from B to C by an isobaric process. The total work done by the gas from A to B and B to C would be :

SECTION-B

- **21.** When a hydrogen atom going from n = 2 to n = 1 emits a photon, its recoil speed is $\frac{x}{5}$ m/s. Where x = (Use : mass of hydrogen atom = 1.6×10^{-27} kg)
- 22. A ball rolls off the top of a stairway with horizontal velocity u. The steps are 0.1 m high and 0.1 m wide. The minimum velocity u with which that ball just hits the step 5 of the stairway will be $\sqrt{x}ms^{-1}$ where $x = [use g = 10 m/s^2]$.

Competishun	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020					
The Power of Real Gurus	Мов. 7410900901, 7410900906, 7410900907, 7410900908	3				
	www.competishun.com	U				

- 23. A square loop of side 10 cm and resistance 0.7Ω is placed vertically in east-west plane. A uniform magnetic field of 0.20 T is set up across the plane in north east direction. The magnetic field is decreased to zero in 1 s at a steady rate. Then, magnitude of induced emf is $\sqrt{x} \times 10^{-3}$ V. The value of *x* is
- 24. A cylinder is rolling down on an inclined plane of inclination 60°. It's acceleration during rolling down will be $\frac{x}{\sqrt{3}}$ m/s², where x =_____. (use g = 10 m/s²).
- **25.** The magnetic potential due to a magnetic dipole at a point on its axis situated at a distance of 20 cm from its center is 1.5×10^{-5} Tm. The magnetic moment of the dipole is Am². (Given : $\frac{\mu_0}{4\pi} = 10^{-7}$ TmA⁻¹)
- **26.** In a double slit experiment shown in figure, when light of wavelength 400 nm is used, dark fringe is observed at P. If D = 0.2 m. the minimum distance between the slits S_1 and S_2 is mm.

- 27. A 16 Ω wire is bend to form a square loop. A 9 V battery with internal resistance 1 Ω is connected across one of its sides. If a 4 μ F capacitor is connected across one of its diagonals, the energy stored by the capacitor will be $\frac{x}{2}\mu$ J. where x =_____.
- **28.** When the displacement of a simple harmonic oscillator is one third of its amplitude, the ratio of total energy to the kinetic energy is $\frac{x}{a}$, where x =_____.
- **29.** An electron is moving under the influence of the electric field of a uniformly charged infinite plane sheet S having surface charge density $+\sigma$. The electron at t = 0 is at a distance of 1 m from S and has a speed of 1 m/s. The maximum value of σ if the electron strikes S at t = 1 s is $\alpha \left[\frac{m\epsilon_0}{e}\right] \frac{c}{m^2}$ the value of α is
- In a test experiment on a model aeroplane in wind tunnel, the flow speeds on the upper and lower surfaces of the wings are 70 ms⁻¹ and 65 ms⁻¹ respectively. If the wing area is 2 m² the lift of the wing is ______N. (Given density of air = 1.2 kg m⁻³)

NTA ANSWERS

1.	(2)	2.	(2)	3.	(3)	4.	(1)	5.	(2)	6.	(2)	7.	(3)
8.	(1)	9.	(3)	10.	(3)	11.	(1)	12.	(3)	13.	(2)	14.	(2)
15.	(2)	16.	(BONUS)		17.	(4)	18.	(2)	19.	(4)	20.	(1)	
21.	(17)	22.	(2)	23.	(2)	24.	(10)	25.	(6)	26.	(0.20)	27.	(81)
28.	(9)	29.	(8)	30.	(810)								

