JEE-MAIN EXAM JANUARY, 2024

Date: - 29-01-2024 (SHIFT-2)

PHYSICS

SECTION-A

- Two sources of light emit with a power of 200 W. The ratio of number of photons of visible light emitted by each source having wavelengths 300 nm and 500 nm respectively, will be :
 - (1) 1 : 5 (2) 1 : 3 (3) 5 : 3 (4) 3 : 5
- 2. The truth table for this given circuit is :

PHYSIC	CS			29-01-2024 (EVENING SESSION)						
7.	The bob of a pe	ndulum was released fr	om a horizontal position.	The length of the pendulum is 10 m. If						
	it dissipates 10%	6 of its initial energy ag	ainst air resistance, the sp	eed with which the bob arrives at the						
	lowest point is :	[Use, g: 10 ms ⁻²]								
	(1) 6√5 ms ^{−1}	(2) $5\sqrt{6} \text{ ms}^{-1}$	(3) $5\sqrt{5} \text{ ms}^{-1}$	(4) $2\sqrt{5} \text{ ms}^{-1}$						
8.	If the distance b	etween object and its ty	wo times magnified virtual	image produced by a curved mirror is						
	15 cm, the focal	length of the mirror mus	st be :							
	(1) 15 cm	(2) – 12 cm	(3) – 10 cm	(4) 10/3 cm						
9.	Two particles <i>x</i>	and Y having equal	charges are being acce	elerated through the same potential						
	difference. There	eafter they enter norma	ally in a region of uniform	magnetic field and describes circular						
	paths of radii R_1	and R_2 respectively. The	e mass ratio of X and Y is	:						
	(1) $\left(\frac{R_2}{R_1}\right)^2$	(2) $\left(\frac{R_1}{R_2}\right)^2$	(3) $\left(\frac{R_1}{R_2}\right)$	$(4) \left(\frac{R_2}{R_1}\right)$						
10.	In Young's doub	le slit experiment, light	from two identical sources	are superimposing on a screen. The						
	path difference between the two lights reaching at a point on the screen is $\frac{7\lambda}{4}$. The ratio of intensity of									
	fringe at this point with respect to the maximum intensity of the fringe is :									
	(1) 1/2	(2) 3/4	(3) 1/3	(4) 1/4						
11.	A small liquid dr	op of radius R is divide	ed into 27 identical liquid d	rops. If the surface tension is T, then						
	the work done in	the process will be :								
	(1) 8πR ² T	(2) 3πR ² T	$(3) \frac{1}{8}\pi R^2 T$	(4) $4\pi R^2$ T						
12.	A bob of mass	m' is suspended by a	a light string of leng <mark>th</mark> ' L '	. It i <mark>s imparte</mark> d a minimum horizontal						
	velocity at the lo	west point A such that i	t just completes half circle	reaching the top most position B. The						
	ratio of kinetic er	nergies $\frac{(K.E.)_A}{(K.E.)_B}$ is :								
			B O C L V_m C V_m							
	(1) 3 : 2	(2) 5 : 1	(3) 2 : 5	(4) 1 : 5						
13.	A wire of length	L and radius r is clam	ped at one end. If its other	r end is pulled by a force <i>F</i> , its length						

- increases by l. If the radius of the wire and the applied force both are reduced to half of their original values keeping original length constant, the increase in length will become.
- (1) 3 times
 (2) 3/2 times
 (3) 4 times
 (4) 2 times **14.** A planet takes 200 days to complete one revolution around the Sun. If the distance of the planet from Sun is reduced to one fourth of the original distance, how many days will it take to complete one revolution?

(1) 25	(2) 50	(3) 100	(4) 20					
Competishun	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020							
The Power of Real Gurus	Мов. 7410900901	2						
	www.competishun.co	<u>m</u>						

15. A plane electromagnetic wave of frequency 35MHz travels in free space along the X-direction. At a

particular point (in space and time) $\vec{E} = 9.6 \text{jV/m}$. The value of magnetic field at this point is :

(1)
$$3.2 \times 10^{-8} \text{kT}$$
 (2) $3.2 \times 10^{-8} \text{iT}$ (3) 9.6 (4) $9.6 \times 10^{-8} \text{kT}$

16. In the given circuit, the current in resistance R_3 is :

17. A particle is moving in a straight line. The variation of position ' x ' as a function of time ' t ' is given as $x = (t^3 - 6t^2 + 20t + 15)m$. The velocity of the body when its acceleration becomes zero is : (1) 4 m/s (2) 8 m/s (3) 10 m/s (4) 6 m/s

18. *N* moles of a polyatomic gas (f = 6) must be mixed with two moles of a monoatomic gas so that the mixture behaves as a diatomic gas. The value of N is :

(1) 6 (2) 3 (3) 4 (4) 2

19. Given below are two statements :

(1) 1 A

Statement I : Most of the mass of the atom and all its positive charge are concentrated in a tiny nucleus and the electrons revolve around it, is Rutherford's model.

Statement II : An atom is a spherical cloud of positive charges with electrons embedded in it, is a special case of Rutherford's model.

In the light of the above statements, choose the most appropriate from the options given below.

- (1) Both statement I and statement II are false
- (2) Statement I is false but statement II is true
- (3) Statement I is true but statement II is false
- (4) Both statement I and statement II are true
- **20.** An electric field is given by $(6\hat{\imath} + 5\hat{j} + 3\hat{k})N/C$.The electric flux through a surface area $30\hat{i}m^2$ lying in YZ-plane (in SI unit) is :(1) 90(2) 150(3) 180(4) 60

SECTION-B

21. Two metallic wires P and Q have same volume and are made up of same material. If their area of cross sections are in the ratio 4:1 and force F_1 is applied to P, an extension of Δl is produced. The force which is required to produce same extension in Q is F_2 .

The value of $\frac{F_1}{F_2}$ is

22. A horizontal straight wire 5 m long extending from east to west falling freely at right angle to horizontal component of earth's magnetic field 0.60×10^{-4} Wbm⁻². The instantaneous value of emf induced in the wire when its velocity is 10 ms⁻¹ is $\times 10^{-3}$ V.

Competishun	OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020							
The Power of Real Gurus	Мов. 7410900901, 7410900906, 7410900907, 7410900908	3						
	www.competishun.com	5						

- 23. Hydrogen atom is bombarded with electrons accelerated through a potential different of V, which causes excitation of hydrogen atoms. If the experiment is being formed at T = 0 K. The minimum potential difference needed to observe any Balmer series lines in the emission spectra will be $\frac{\alpha}{10}$ V, where $\alpha =$
- **24.** A charge of 4.0μ C is moving with a velocity of 4.0×10^6 ms⁻¹ along the positive y-axis under a magnetic field \vec{B} of strength $(2\hat{k})$ T. The force acting on the charge is $x\hat{i}N$. The value of x is
- **25.** A simple harmonic oscillator has an amplitude A and time period 6π second. Assuming the oscillation starts from its mean position, the time required by it to travel from x = A to $x = \frac{\sqrt{3}}{2}A$ will be $\frac{\pi}{x}$ s, where x =
- **26.** In the given figure, the charge stored in 6μ F capacitor, when points A and B are joined by a connecting wire is μ C.
- 27. In a single slit diffraction pattern, a light of wavelength 6000 Å is used. The distance between the first and third minima in the diffraction pattern is found to be 3 mm when the screen in placed 50 cm away from slits. The width of the slit is $\times 10^{-4}$ m.
- **28.** In the given circuit, the current flowing through the resistance 20Ω is 0.3 A, while the ammeter reads 0.9 A. The value of R₁ is Ω .
- **29.** A particle is moving in a circle of radius 50 cm in such a way that at any instant the normal and tangential components of its acceleration are equal. If its speed at t = 0 is 4 m/s, the time taken to complete the first revolution will be $\frac{1}{\alpha}[1 e^{-2\pi}]s$, where $\alpha = \frac{1}{\alpha}$
- **30.** A body of mass 5 kg moving with a uniform speed $3\sqrt{2} \text{ ms}^{-1}$ in X Y plane along the line y = x + 4. The angular momentum of the particle about the origin will be kgms⁻¹.

H	Ľ	R	V	V	N	7	4		l
_	<u> </u>								

1.	(4)	2.	(2)	3.	(3)	4.	(3)	5.	(1)	6.	(2)	7.	(1)
8.	(3)	9.	(2)	10.	(1)	11.	(1)	12.	(2)	13.	(4)	14.	(1)
15.	(1)	16.	(1)	17.	(2)	18.	(3)	19.	(3)	20.	(3)	21.	(16)
22.	(3)	23.	(121)	24.	(32)	25.	(2)	26.	(36)	27.	(2)	28.	(30)
29.	(8)	30.	(60)										

