competishun

1

JEE-MAIN EXAM JANUARY, 2025

Date: - 29-01-2025 (SHIFT-2)

MATHEMATICS

SECTION-A

Let the line x + y = 1 meet the axes of x and y at A and B, respectively. A right angled triangle A M 1. N is inscribed in the triangle OAB, where O is the origin and the points M and N lie on the lines OB and AB, respectively. If the area of the triangle AMN is $\frac{4}{9}$ of the area of the triangle OAB and AN : $NB = \lambda$: 1 , then the sum of all possible value(s) of is λ : (1) $\frac{13}{4}$ (2) $\frac{5}{2}$ (4) $\frac{1}{2}$ (3) 2 Let the function $f(x) = (x^2 - 1)|x^2 - ax + 2| + \cos |x|$ be not differentiable at the two points $x = \alpha = 2$ 2. and $x = \beta$. Then the distance of the point (α, β) from the line 12x + 5y + 10 = 0 is equal to : (1) 2(3)3(4) 4(2)5Let $f(x) = \int_0^x t(t^2 - 9t + 20) dt, 1 \le x \le 5$. If the range of f is $[\alpha, \beta]$, then $4(\alpha + \beta)$ equals : 3. (1)253(2) 125 (3) 154 (4) 157 Let $A = |a_{ij}|$ be a 2×2 matrix such that $a_{ij} \in \{0,1\}$ for all *i* and *j*. Let the random variable X denote 4. the possible values of the determinant of the matrix A. Then, the variance of X is : (3) $\frac{3}{2}$ (1) $\frac{1}{4}$ (2) $\frac{5}{2}$ (4) $\frac{3}{4}$ Let a straight line L pass through the point P(2,-1,3) and be perpendicular to the lines 5. $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-3}{-2}$ and $\frac{x-3}{1} = \frac{y-2}{3} = \frac{z+2}{4}$. If the line L intersects the yz-plane at the point Q, then the distance between the points P and Q is : (1) $2\sqrt{3}$ (4) $\sqrt{10}$ (2)3(3)2Let P be the foot of the perpendicular from the point (1,2,2) on the line L: $\frac{x-1}{1} = \frac{y+1}{1} = \frac{z-2}{2}$. Let 6. the line $\vec{\mathbf{r}} = (-\hat{i} + \hat{j} - 2\hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k}), \lambda \in \mathbf{R}$, intersect the line L at Q. Then $2(PQ)^2$ is equal to: (2) 29(1) 19(3)25(4) 27OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

Мов. 7410900901, 7410900906, 7410900907, 7410900908

www.competishun.com

7. Let
$$S = \mathbf{N} \cup \{0\}$$
. Define a relation R from S to \mathbf{R} by :

$$R = \left\{ (x, y): \log_{q} y = x \log_{q} \left(\frac{2}{5}\right), x \in S, y \in \mathbf{R} \right\}.$$
Then, the sum of all the elements in the range of R is equal to :
(1) $\frac{10}{9}$ (2) $\frac{5}{2}$ (3) $\frac{5}{3}$ (4) $\frac{3}{2}$
8. Bag 1 contains 4 white balls and 5 black balls, and Bag 2 contains n white balls and 3 black balls. One ball is drawn randomly from Bag 1 and transferred to Bag 2. A ball is then drawn randomly from Bag 2. If the probability, that the ball drawn is white, is $29/45$, then n is equal to :
(1) 6 (2) 4 (3) 5 (4) 3
9. The remainder, when 7^{160} is divided by 23, is equal to :
(1) 9 (2) 14 (3) 17 (4) 6
10. Let $\alpha, \beta(\alpha \neq \beta)$ be the values of m_{+} for which the equations $x + y + z = 1; x + 2y + 4z = m$ and $x + 4y + 10z = m^{2}$ have infinitely many solutions. Then the value of $\sum_{n=1}^{10} (n^{\circ} + n^{\beta})$ is equal to :
(1) 440 (2) 3080 (3) 3410 (4) 560
11. If $\sin x + \sin^{2} x = 1, x \in \left(0, \frac{\pi}{2}\right)$, then
 $(\cos^{12} x + \tan^{12} x) + 3(\cos^{10} x + \tan^{10} x + \cos^{5} x + \tan^{5} x) + (\cos^{6} x + \tan^{6} x)$ is equal to :
(1) 2 (2) 4 (3) 3 (4) 1
12. Let the area enclosed between the curves $|y| = 1 - x^{2}$ and $x^{2} + y^{2} = 1$ be $\alpha \cdot if \ 9\alpha = \beta\pi + \gamma; \beta, \gamma$ are integers, then the value of $|\beta - \gamma|$ equals.
(1) 18 (2) 15 (3) 33 (4) 27
13. Let a circle *C* pass through the points (4, 2) and (0, 2), and its centre lie on $3x + 2y + 2 = 0$. Then the length of the chord, of the circle C, whose mid-point is (1, 2), is :
(1) $2\sqrt{3}$ (2) $2\sqrt{2}$ (3) $\sqrt{3}$ (4) $4\sqrt{2}$
14. If the domain of the function $\log_{5}(18x - x^{2} - 77)$ is (α, β) and the domain of the function $\log_{[(-1)}(\frac{2x^{2} + 3x - 2)}{x^{2} - 3x - 4})$ is (y, δ) , then $\alpha^{2} + \beta^{2} + \gamma^{2}$ is equal to :
(1) 195 (2) 174 (3) 186 (4) 179
EVENCIFICAL DOPERSE: Plot number 35. Gogalarya Byeas Ref. new Riddle Studie Circle, 10 B Sections, Trivendogo 18, 210000007, 7410000007, 7410000007, 7410000007, 7410000007, 74100000007, 7410000007, 74100000007, 74100000007, 74100000007, 741

www.competishun.com

15.	If for the solution c	urve $y = f(x)$ of the	differential equation	$\frac{dy}{dx} + (\tan x)y = \frac{2 + \sec x}{(1 + 2\sec x)^2},$							
	$x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right), f\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{10}$, then $f\left(\frac{\pi}{4}\right)$ is equal to :										
	(1) $\frac{\sqrt{3}+1}{10(4+\sqrt{3})}$	(2) $\frac{9\sqrt{3}+3}{10(4+\sqrt{3})}$	(3) $\frac{5-\sqrt{3}}{2\sqrt{2}}$	(4) $\frac{4-\sqrt{2}}{14}$							
16.	Let $A = [a_{ij}]$ be a matrix of order 3×3 , with $a_{ij} = (\sqrt{2})^{i+j}$. If the sum of all the elements in the third										
	row of A^2 is $\alpha + \beta \sqrt{2}, \alpha, \beta \in \mathbb{Z}$, then $\alpha + \beta$ is equal to :										
	(1) 280	(2) 224	(3) 210	(4) 168							
17.	Let \hat{a} be a unit vector perpendicular to the vectors $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{c} = 2\hat{i} + 3\hat{j} - \hat{k}$, and makes an										
	angle of $\cos^{-1}\left(-\frac{1}{3}\right)$ with the vector $\hat{i} + \hat{j} + \hat{k}$. If a makes an angle of $\frac{\pi}{3}$ with the vector $\hat{i} + \alpha \hat{j} + \hat{k}$,										
	then the value of α is:										
	(1) √6	(2) -\sqrt{3}	(3) -\sqrt{6}	(4) √3							
18.	If all the words with or	without meaning made	using all the letters of the	e word "KANPUR" are arranged							
	as in a dictionary, then the word at $440^{ m th}$ position in this arrangement, is :										
	(1) PRNAUK	(2) PRNAKU	(3) PRKAUN	(4) PRKANU							
19.	If the set of all $a \in \mathbf{R}$,	for which the equation 2	$2x^2 + (a-5)x + 15 = 3$	a has no real root, is the interval							
	(α,β) , and $X = \{x \in Z : \alpha < x < \beta\}$, then $\sum_{x \in X} x^2$ is equal to :										
	(1) 2119	(2) 2139	(3) 2129	(4) 2109							
20.	If $\alpha x + \beta y = 109$ is th	e equation of the chord	of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} =$	1, whose mid point is $\left(\frac{5}{2}, \frac{1}{2}\right)$,							
	then $\alpha + \beta$ is equal to :										
	(1) 72	(2) 46	(3) 58	(4) 37							

SECTION-B

21. Let $a_1, a_2, \dots, a_{2024}$ be an Arithmetic Progression such that

 $a_1 + (a_5 + a_{10} + a_{15} + \ldots + a_{2020}) + a_{2024} = 2233$. Then $a_1 + a_2 + a_3 + \ldots + a_{2024}$ is equal to_____.

22. Let $y^2 = 12x$ be the parabola and S be its focus. Let PQ be a focal chord of the parabola such that

 $(SP)(SQ) = \frac{147}{4}$. Let *C* be the circle described taking PQ as a diameter. If the equation of a circle *C*

is $64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta$, then $\beta - \alpha$ is equal to _____.

23. Let integers $a, b \in [-3,3]$ be such that $a + b \neq 0$. Then the number of all possible ordered pairs (a, b),

for which $\left|\frac{z-a}{z+b}\right| = 1$ and $\begin{vmatrix} z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega \end{vmatrix} = 1, z \in C$, where ω and ω^2 are the roots of

 $x^2 + x + 1 = 0$, is equal to _____.

- 24. If $\lim_{t \to 0} \left(\int_0^1 (3x+5)^t dx \right)^{\frac{1}{t}} = \frac{\alpha}{5e} \left(\frac{8}{5}\right)^{\frac{2}{3}}$, then α is equal to_____.
- 25. If $24\int_{0}^{\frac{\pi}{4}} \left(\sin \left| 4x \frac{\pi}{12} \right| + [2\sin x] \right) dx = 2\pi + \alpha$, where [•] denotes the greatest integer function, then α

```
is equal to _____.
```

NTA ANSWERS

1.	(3)	2.	(3)	3.	(4)	4.	(3)	5.	(2)	6.	(4)	7.	(3)
8.	(1)	9.	(2)	10.	(1)	11.	(1)	12.	(3)	13.	(1)	14.	(3)
15.	(4)	16.	(2)	17.	(3)	18.	(3)	19.	(2)	20.	(3)	21. (11	132)
22.	(1328)	23.	(10)	24.	(64)	25.	(12)						

