JEE-MAIN EXAM JANUARY, 2024

Date: - 30-01-2024 (SHIFT-2)

CHEMISTRY

SECTION-A

- 1. Which among the following purification methods is based on the principle of "Solubility" in two different solvents?
 - (1) Column Chromatography

- (2) Sublimation
- (3) Distillation (4) Differential Extraction
- 2. Salicylaldehyde is synthesized from phenol, when reacted with

(3) CCl₄, NaOH

(2) CO₂, NaOH

(4) HCCl₃, NaOH

3. Given below are two statements:

Statement - I: High concentration of strong nucleophilic reagent with secondary alkyl halides which do not have bulky substituents will follow $S_N 2$ mechanism.

Statement - II: A secondary alkyl halide when treated with a large excess of ethanol follows $S_N 1$ mechanism.

In the light of the above statements, choose the most appropriate from the questions given below:

- (1) Statement I is true but Statement II is false. (2) Statement I is false but Statement II is true.
- (3) Both statement I and Statement II are false. (4) Both statement I and Statement II are true.
- 4. m-chlorobenzaldehyde on treatment with 50% KOH solution yields

OFFICE ADDRESS : Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 MoB. 7410900901, 7410900906, 7410900907, 7410900908 5. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R. Assertion A : H_2 Te is more acidic than H_2 S.

Reason R: Bond dissociation enthalpy of H_2 Te is lower than H_2 S.

In the light of the above statements. Choose the most appropriate from the options given below.

- (1) Both A and R are true but R is NOT the correct explanation of A.
- (2) Both A and R are true and R is the correct explanation of A.
- (3) A is false but R is true.
- (4) A is true but R is false.
- 6. Product A and B formed in the following set of reactions are:

www.competishun.com

9.	IISTRY			30-01-2024 (EVENING SESSION)					
	The molecule/ion with	square pyramidal shape	e is:						
	(1) $[Ni(CN)_4]^{2-}$	(2) PCl ₅	(3) BrF ₅	(4) PF ₅					
10.	The orange colour of $K_2Cr_2O_7$ and purple colour of $KMnO_4$ is due to								
	(1) Charge transfer transition in both.								
	(2) d \rightarrow d transition in KMnO ₄ and charge transfer transitions in K ₂ Cr ₂ O ₇ .								
	(3) d \rightarrow d transition in K ₂ Cr ₂ O ₇ and charge transfer transitions in KMnO ₄ .								
	(4) $d \rightarrow d$ transition in both.								
11.	Alkaline oxidative fusion of ${ m MnO}_2$ gives "A" which on electrolytic oxidation in alkaline solution produce								
	B. A and B respectively	y are :							
	(1) Mn_2O_7 and MnO_4^-	(2) MnO_4^{2-} and MnO_4^{-}	(3) Mn_2O_3 and MnO_4^{2-}	(4) MnO_4 ^{2–} and Mn_2O_7					
12.	If a substance ' A ' di	ssolves in solution of a	mixture of 'B' and 'C	' with their respective number o					
	moles as n_A , n_B and n_C	, mole fraction of C in th	ne solution is:						
	(1) $\frac{n_{C}}{n_{C}}$	(2) <u></u>	(3) $\frac{n_C}{n_A - n_B - n_C}$	$(4) \frac{n_B}{m_B}$					
13.	Given below are two s	n b d	$n_A - n_B - n_C$	$n_A + n_B$					
13.			reactivity of the element	aradually increases from aroun 1					
	Statement - I: Along the period, the chemical reactivity of the element gradually increases from group								
	to group 18.								
	Statement - II: The nature of oxides formed by group 1 element is basic while that of group 1								
	elements is acidic.								
	In the light above statements, choose the most appropriate from the questions given below:								
	(1) Both statement I and Statement II are true.(2) Statement I is true but Statement II is False.								
	(3) Statement I is false but Statement II is true.(4) Both Statement I and Statement II is false.								
14	(4) Both Statement I a	nd Statement II is false.		anganese (0)					
14.	(4) Both Statement I a The coordination geon	nd Statement II is false.	nese in decacarbonyldim						
14.	(4) Both Statement I aThe coordination geon(1) Octahedral	nd Statement II is false.	nese in decacarbonyldim (2) Trigonal bipyramid						
	(4) Both Statement I aThe coordination geon(1) Octahedral(3) Square pyramidal	nd Statement II is false. netry around the mangar	nese in decacarbonyldim						
14. 15.	 (4) Both Statement I a The coordination geon (1) Octahedral (3) Square pyramidal Given below are two s 	nd Statement II is false. netry around the mangar tatements:	nese in decacarbonyldim (2) Trigonal bipyramid (4) Square planar	al					
	 (4) Both Statement I a The coordination geon (1) Octahedral (3) Square pyramidal Given below are two s Statement-I: Since fill 	nd Statement II is false. netry around the mangar tatements:	nese in decacarbonyldim (2) Trigonal bipyramid (4) Square planar						
	 (4) Both Statement I a The coordination geon (1) Octahedral (3) Square pyramidal Given below are two s Statement-I: Since flugreater than NH₃. 	nd Statement II is false. netry around the mangar tatements: uorine is more electrone	nese in decacarbonyldim (2) Trigonal bipyramid (4) Square planar egative than nitrogen, th	al ne net dipole moment of NF_3 is					
	 (4) Both Statement I a The coordination geon (1) Octahedral (3) Square pyramidal Given below are two s Statement-I: Since flugreater than NH₃. Statement-II: In NH₃, 	nd Statement II is false. netry around the mangar tatements: uorine is more electrone the orbital dipole due t	nese in decacarbonyldim (2) Trigonal bipyramid (4) Square planar egative than nitrogen, th to lone pair and the dip	he net dipole moment of NF_3 is ole moment of NH bonds are in					
	 (4) Both Statement I a The coordination geometry (1) Octahedral (3) Square pyramidal Given below are two s Statement-I: Since flugreater than NH₃. Statement-II: In NH₃, opposite direction, but 	nd Statement II is false. netry around the mangar tatements: uorine is more electrone the orbital dipole due t	nese in decacarbonyldim (2) Trigonal bipyramid (4) Square planar egative than nitrogen, th to lone pair and the dip	al ne net dipole moment of NF_3 is ole moment of NH bonds are in					
	 (4) Both Statement I a The coordination geom (1) Octahedral (3) Square pyramidal Given below are two s Statement-I: Since flugreater than NH₃. Statement-II: In NH₃, opposite direction, but same direction. 	nd Statement II is false. hetry around the mangar tatements: uorine is more electrone the orbital dipole due to in NF ₃ the orbital dipole	nese in decacarbonyldim (2) Trigonal bipyramid (4) Square planar egative than nitrogen, th to lone pair and the dip due to lone pair and dip	al he net dipole moment of NF_3 is ole moment of NH bonds are ir ole moments of N-F bonds are ir					
	 (4) Both Statement I a The coordination geom (1) Octahedral (3) Square pyramidal Given below are two s Statement-I: Since flugreater than NH₃. Statement-II: In NH₃, opposite direction, but same direction. In the light of the above 	nd Statement II is false. hetry around the mangar tatements: uorine is more electrone the orbital dipole due to in NF ₃ the orbital dipole e statements. Choose th	nese in decacarbonyldim (2) Trigonal bipyramid (4) Square planar egative than nitrogen, th to lone pair and the dip due to lone pair and dip	al					
	 (4) Both Statement I a The coordination geom (1) Octahedral (3) Square pyramidal Given below are two s Statement-I: Since flugreater than NH₃. Statement-II: In NH₃, opposite direction, but same direction. In the light of the above (1) Statement I is true 	nd Statement II is false. hetry around the mangar tatements: uorine is more electrone the orbital dipole due to in NF ₃ the orbital dipole e statements. Choose the but Statement II is false.	nese in decacarbonyldim (2) Trigonal bipyramid (4) Square planar egative than nitrogen, th to lone pair and the dip due to lone pair and dip	al he net dipole moment of NF_3 is ole moment of NH bonds are ir ole moments of N-F bonds are ir					
	 (4) Both Statement I a The coordination geon (1) Octahedral (3) Square pyramidal Given below are two s Statement-I: Since fluid greater than NH₃. Statement-II: In NH₃, opposite direction, but same direction. In the light of the above (1) Statement I is true (2) Both Statement I a 	nd Statement II is false. netry around the mangar tatements: uorine is more electrone the orbital dipole due to in NF ₃ the orbital dipole e statements. Choose the but Statement II is false. nd Statement II are false	nese in decacarbonyldim (2) Trigonal bipyramid (4) Square planar egative than nitrogen, th to lone pair and the dip due to lone pair and dip ne most appropriate from	al he net dipole moment of NF_3 is ole moment of NH bonds are ir ole moments of N-F bonds are ir					
	 (4) Both Statement I a The coordination geom (1) Octahedral (3) Square pyramidal Given below are two s Statement-I: Since flagreater than NH₃. Statement-II: In NH₃, opposite direction, but same direction. In the light of the above (1) Statement I is true (2) Both Statement I a (3) Both statement I ar 	nd Statement II is false. hetry around the mangar tatements: uorine is more electrone the orbital dipole due to in NF ₃ the orbital dipole e statements. Choose the but Statement II is false. nd Statement II are false hd Statement II is are true	nese in decacarbonyldim (2) Trigonal bipyramid (4) Square planar egative than nitrogen, th to lone pair and the dip due to lone pair and dip ne most appropriate from	al he net dipole moment of NF_3 is ole moment of NH bonds are in ole moments of N-F bonds are in					
	 (4) Both Statement I a The coordination geom (1) Octahedral (3) Square pyramidal Given below are two s Statement-I: Since flagreater than NH₃. Statement-II: In NH₃, opposite direction, but same direction. In the light of the above (1) Statement I is true (2) Both Statement I a (3) Both statement I ar 	nd Statement II is false. netry around the mangar tatements: uorine is more electrone the orbital dipole due to in NF ₃ the orbital dipole e statements. Choose the but Statement II is false. nd Statement II are false	nese in decacarbonyldim (2) Trigonal bipyramid (4) Square planar egative than nitrogen, th to lone pair and the dip due to lone pair and dip ne most appropriate from	al he net dipole moment of NF_3 is ole moment of NH bonds are in ole moments of N-F bonds are in					
15.	 (4) Both Statement I a The coordination geom (1) Octahedral (3) Square pyramidal Given below are two s Statement-I: Since flagreater than NH₃. Statement-II: In NH₃, opposite direction, but same direction. In the light of the above (1) Statement I is true (2) Both Statement I a (3) Both statement I ar 	nd Statement II is false. netry around the mangar tatements: uorine is more electrone the orbital dipole due to in NF ₃ the orbital dipole e statements. Choose the but Statement II is false. nd Statement II are false and Statement II is are true but Statement II is are true	nese in decacarbonyldim (2) Trigonal bipyramid (4) Square planar egative than nitrogen, th to lone pair and the dip due to lone pair and dip ne most appropriate from	he net dipole moment of NF ₃ is ole moment of NH bonds are in ole moments of N-F bonds are ir the options given below.					

+

16. The correct stability order of carbocations is

(1)
$$(CH_3)_3C^+ > CH_3 - CH_2 > (CH_3)_2CH > CH_3$$

(2)
$$CH_3 > (CH_3)_2 CH > CH_3 - CH_2 > (CH_3)_3 C$$

(3)
$$(CH_3)_3 C > (CH_3)_2 CH > CH_3 - CH_2 > CH_3$$

(4)
$$\overset{+}{C}H_3 > CH_3 - \overset{+}{C}H_2 > CH_3 - \overset{+}{C}H > (CH_3)C^+$$

 $|_{CH_2}$

- 17. The solution from the following with highest depression in freezing point/lowest freezing point is
 - (1) 180 g of acetic acid dissolved in water
 - (2) 180 g of acetic acid dissolved in benzene
 - (3) 180 g of benzoic acid dissolved in benzene
 - (4) 180 g of glucose dissolved in water
- **18.** A and B formed in the following reactions are:

 $CrO_2Cl_2 + 4NaOH \rightarrow A + 2NaCl + 2H_2O$ $A + 2HCl + 2H_2O_2 \rightarrow B + 3H_2O$

(1) $A = Na_2CrO_4$, $B = CrO_5$ (2) $A = Na_2Cr_2O_4$, $B = CrO_4$

(3)
$$A = Na_2Cr_2O_7$$
, $B = CrO_3$ (4) $A = Na_2Cr_2O_7$, $B = CrO_5$

- **19.** Choose the correct statements about the hydrides of group 15 elements.
 - A. The stability of the hydrides decreases in the order $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$
 - B. The reducing ability of the hydrides increases in the order $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$
 - C. Among the hydrides, NH₃ is strong reducing agent while BiH₃ is mild reducing agent.
 - D. The basicity of the hydrides increases in the order $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$

Choose the most appropriate from the option given below:

- (1) B and C only (2) C and D only (3) A and B only (4) A and D only
- 20. Reduction potential of ions are given below:

 $\begin{array}{ccc} ClO_{4}^{-} & IO_{4}^{-} & BrO_{4}^{-} \\ E^{\circ} = 1.19 \ V & E^{\circ} = 1.65 \ V & E^{\circ} = 1.74 \ V \end{array}$

The correct order of their oxidising power is:

(1) $ClO_{4}^{-} > IO_{4}^{-} > BrO_{4}^{-}$	(2) $BrO_4^- > IO_4^- > ClO_4^-$
(3) $BrO_4^- > ClO_4^- > IO_4^-$	(4) $IO_4^- > BrO_4^- > ClO_4^-$

SECTION-B

21. Number of complexes which show optical isomerism among the following is ______

 $cis - [Cr(ox)_2Cl_2]^{3-}, [Co(en)_3]^{3+},$

 $\operatorname{cis} - [\operatorname{Pt}(\operatorname{en})_2\operatorname{Cl}_2]^{2+}, \operatorname{cis} - [\operatorname{Co}(\operatorname{en})_2\operatorname{Cl}_2]^+,$

trans $-[Pt(en)_2Cl_2]^{2+}$, trans $-[Cr(ox)_2Cl_2]^{3-}$

NO₂ required for a reaction is produced by decomposition of N₂O₅ in CCl₄ as by equation 2 N₂O_{5(g)} → 4NO_{2(g)} + O_{2(g)}
The initial concentration of N₂O₅ is 3 mol L⁻¹ and it is 2.75 mol L⁻¹ after 30 minutes. The rate of formation of NO₂ is x × 10⁻³ mol L⁻¹ min⁻¹, value of x is _____.
Two reactions are given below:

$$2Fe_{(s)} + \frac{3}{2}O_{2(g)} \rightarrow Fe_2O_{3(s)}, \Delta H^o = -822 \text{ kJ/mol}$$
$$C_{(s)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{(g)}, \Delta H^o = -110 \text{ kJ/mol}$$

Then enthalpy change for following reaction $3C_{(s)} + Fe_2O_{3(s)} \rightarrow 2Fe_{(s)} + 3CO_{(g)}$

- 24. The total number of correct statements, regarding the nucleic acids is _____
 - A. RNA is regarded as the reserve of genetic information.
 - B. DNA molecule self-duplicates during cell division
 - C. DNA synthesizes proteins in the cell.
 - D. The message for the synthesis of particular proteins is present in DNA
 - E. Identical DNA strands are transferred to daughter cells.
- **25.** The pH of an aqueous solution containing 1M benzoic acid ($pK_a = 4.20$) and 1M sodium benzoate is 4.5. The volume of benzoic acid solution in 300 mL of this buffer solution is _____ mL.
- 26. Number of geometrical isomers possible for the given structure is/are

27. Total number of species from the following which can undergo disproportionation reaction _____.

28. Number of metal ions characterized by flame test among the following is _____.

29. 2-chlorobutane $+Cl_2 \rightarrow C_4H_8Cl_2$ (isomers)

Total number of optically active isomers shown by $C_4H_8Cl_2$, obtained in the above reaction is _____.

30. Number of spectral lines obtained in He⁺spectra, when an electron makes transition from fifth excited state to first excited state will be

NTA ANSWERS

1.	(4)	2.	(4)	3.	(4)	4.	(2)	5.	(2)	6.	(2)	7.	(3)
8.	(3)	9.	(3)	10.	(1)	11.	(2)	12.	(2)	13.	(3)	14.	(1)
15.	(2)	16.	(3)	17.	(1)	18.	(1)	19.	(3)	20.	(2)	21.	(4)
22.	(17)	23.	(492)	24.	(3)	25.	(100)	26.	(4)	27.	(6)	28.	(4)
29.	(6)	30.	(10)										

