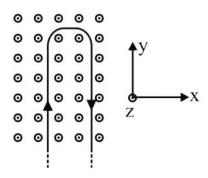

JEE-MAIN EXAM JANUARY, 2024

Date: - 31-01-2024 (SHIFT-1)

PHYSICS

SECTION-A

- 1. The parameter that remains the same for molecules of all gases at a given temperature is :
 - (1) kinetic energy
- (2) momentum
- (3) mass
- (4) speed
- 2. Identify the logic operation performed by the given circuit.

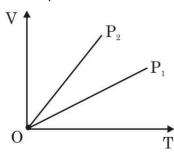


- (1) NAND
- (2) NOR
- (3) OR
- (4) AND
- 3. The relation between time 't' and distance 'x' is $t = \alpha x^2 + \beta x$, where α and β are constants. The relation between acceleration (a) and velocity (v) is:
 - $(1) a = -2\alpha v^3$
- (2) $a = -5\alpha v^5$
- $(3) a = -3\alpha v^2$
- (4) $a = -4\alpha v^4$
- 4. The refractive index of a prism with apex angle A is cot A/2. The angle of minimum deviation is:
 - (1) $\delta_{\rm m} = 180^{\circ} A$

(2) $\delta_{\rm m} = 180^{\circ} - 3 \text{ A}$

(3) $\delta_{\rm m} = 180^{\circ} - 4 \text{ A}$

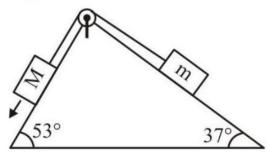
- (4) $\delta_{\rm m} = 180^{\circ} 2 \text{ A}$
- 5. A rigid wire consists of a semicircular portion of radius R and two straight sections. The wire is partially immerged in a perpendicular magnetic field $B = B_0 \hat{j}$ as shown in figure. The magnetic force on the wire if it has a current i is :


- (1) -iBRĵ
- (2) 2iBRĵ
- (3) *iBRĵ*
- $(4) -2iBR\hat{1}$
- 6. If the wavelength of the first member of Lyman series of hydrogen is λ . The wavelength of the second member will be
 - $(1)\frac{27}{32}\lambda$
- (2) $\frac{32}{27}\lambda$
- (3) $\frac{27}{5}\lambda$
- $(4)\frac{5}{27}\lambda$

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

Мов. 7410900901, 7410900906, 7410900907, 7410900908

- Four identical particles of mass m are kept at the four corners of a square. If the gravitational force exerted on one of the masses by the other masses is $\left(\frac{2\sqrt{2}+1}{32}\right)\frac{Gm^2}{L^2}$, the length of the sides of the square is
 - (1) L/2
- (2) 4 L
- (3) 3 L
- (4) 2 L
- 8. The given figure represents two isobaric processes for the same mass of an ideal gas, then



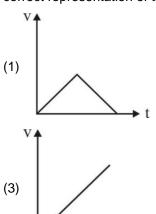
- (1) $P_2 \ge P_1$
- (2) $P_2 > P_1$
- (3) $P_1 = P_2$
- 9. If the percentage errors in measuring the length and the diameter of a wire are 0.1% each. The percentage error in measuring its resistance will be:
 - (1) 0.2%
- (2) 0.3%
- (3) 0.1%
- (4) 0.144%
- In a plane EM wave, the electric field oscillates sinusoidally at a frequency of 5×10^{10} Hz and an 10. amplitude of 50Vm⁻¹. The total average energy density of the electromagnetic field of the wave is :
 - [Use $\varepsilon_0 = 8.85 \times 10^{-12} \text{C}^2/\text{Nm}^2$]

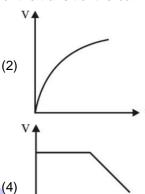
- (1) $1.106 \times 10^{-8} \text{Jm}^{-3}$ (2) $4.425 \times 10^{-8} \text{Jm}^{-3}$ (3) $2.212 \times 10^{-8} \text{Jm}^{-3}$ (4) $2.212 \times 10^{-10} \text{Jm}^{-3}$
- A force is represented by $F = ax^2 + bt^{1/2}$ 11.

Where x = distance and t = time. The dimensions of b^2/a are:

- (1) $[ML^3 T^{-3}]$
- (2) $[MLT^{-2}]$
- (3) $[ML^{-1} T^{-1}]$ (4) $[ML^2 T^{-3}]$
- Two charges q and 3q are separated by a distance ' r ' in air. At a distance x from charge q, the 12. resultant electric field is zero. The value of x is :
 - (1) $\frac{(1+\sqrt{3})}{r}$
- (2) $\frac{r}{3(1+\sqrt{3})}$
- (3) $\frac{r}{(1+\sqrt{3})}$
- (4) $r(1+\sqrt{3})$
- In the given arrangement of a doubly inclined plane two blocks of masses M and m are placed. The 13. blocks are connected by a light string passing over an ideal pulley as shown. The coefficient of friction between the surface of the plane and the blocks is 0.25. The value of m, for which $M=10~\mathrm{kg}$ will move down with an acceleration of 2 m/s², is: (take $g = 10 \text{ m/s}^2$ and $tan 37^\circ = 3/4$)

- (1) 9 kg
- (2) 4.5 kg
- (3) 6.5 kg
- (4) 2.25 kg




OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

14. A coil is placed perpendicular to a magnetic field of 5000 T. When the field is changed to 3000 T in 2 s, an induced emf of 22 V is produced in the coil. If the diameter of the coil is 0.02 m, then the number of turns in the coil is :

(1)7

- (2) 70
- (3) 35
- (4) 140
- 15. The fundamental frequency of a closed organ pipe is equal to the first overtone frequency of an open organ pipe. If length of the open pipe is 60 cm, the length of the closed pipe will be:
 - (1) 60 cm
- (2) 45 cm
- (3) 30 cm
- (4) 15 cm
- 16. A small steel ball is dropped into a long cylinder containing glycerine. Which one of the following is the correct representation of the velocity time graph for the transit of the ball?

17. A coin is placed on a disc. The coefficient of friction between the coin and the disc is μ . If the distance of the coin from the center of the disc is r, the maximum angular velocity which can be given to the disc, so that the coin does not slip away, is:

(1) $\frac{\mu g}{r}$

- (2) $\sqrt{\frac{r}{\mu g}}$
- (3) $\sqrt{\frac{\mu g}{r}}$
- (4) $\frac{\mu}{\sqrt{\text{rg}}}$
- 18. Two conductors have the same resistances at $0^{\circ}C$ but their temperature coefficients of resistance are α_1 and α_2 . The respective temperature coefficients for their series and parallel combinations are :

 $(1) \ \alpha_1 + \alpha_2, \frac{\alpha_1 + \alpha_2}{2}$

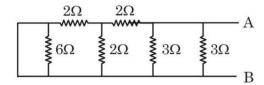
 $(2) \ \frac{\alpha_1 + \alpha_2}{2}, \frac{\alpha_1 + \alpha_2}{2}$

(3) $\alpha_1 + \alpha_2, \frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2}$

- $(4) \ \frac{\alpha_1 + \alpha_2}{2}, \alpha_1 + \alpha_2$
- 19. An artillery piece of mass M_1 fires a shell of mass M_2 horizontally. Instantaneously after the firing, the ratio of kinetic energy of the artillery and that of the shell is

(1) $M_1/(M_1+M_2)$

 $(2)\frac{M_2}{M_1}$


(3) $M_2/(M_1+M_2)$

- (4) $\frac{M_1}{M_2}$
- 20. When a metal surface is illuminated by light of wavelength λ , the stopping potential is 8 V. When the same surface is illuminated by light of wavelength 3λ , stopping potential is 2 V. The threshold wavelength for this surface is :
 - $(1) 5\lambda$
- $(2) 3\lambda$
- $(3) 9\lambda$
- (4) 4.5λ

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

SECTION-B

- 21. An electron moves through a uniform magnetic field $\vec{B} = B_0 \hat{\imath} + 2B_0 \hat{\jmath} T$. At a particular instant of time, the velocity of electron is $\vec{u} = 3\hat{\imath} + 5\hat{\jmath} m/s$. If the magnetic force acting on electron is $\vec{F} = 5ekN$, where e is the charge of electron, then the value of B_0 is T.
- 22. A parallel plate capacitor with plate separation 5 mm is charged up by a battery. It is found that on introducing a dielectric sheet of thickness 2 mm, while keeping the battery connections intact, the capacitor draws 25% more charge from the battery than before. The dielectric constant of the sheet is
- **23.** Equivalent resistance of the following network is Ω .

- 24. A solid circular disc of mass 50 kg rolls along a horizontal floor so that its center of mass has a speed of 0.4 m/s. The absolute value of work done on the disc to stop it is J.
- 25. A body starts falling freely from height H hits an inclined plane in its path at height h. As a result of this perfectly elastic impact, the direction of the velocity of the body becomes horizontal. The value of $\frac{H}{h}$ for which the body will take the maximum time to reach the ground is
- Two waves of intensity ratio 1:9 cross each other at a point. The resultant intensities at the point, when (a) Waves are incoherent is $I_1(b)$ Waves are coherent is I_2 and differ in phase by 60° . If $\frac{1}{1_2} = \frac{10}{x}$ then $x = \frac{10}{x}$
- 27. A small square loop of wire of side ℓ is placed inside a large square loop of wire of side L (L = ℓ^2). The loops are coplanar and their centers coinside. The value of the mutual inductance of the system is $\sqrt{x} \times 10^{-7} \text{H}$, where x =____.
- 28. The depth below the surface of sea to which a rubber ball be taken so as to decrease its volume by 0.02% is m.
 - (Take density of sea water = $10^3 \rm kgm^{-3}$, Bulk modulus of rubber = $9 \times 10^8 \rm Nm^{-2}$, and g = $10~\rm ms^{-2}$)
- 29. A particle performs simple harmonic motion with amplitude A. Its speed is increased to three times at an instant when its displacement is $\frac{2 \text{ A}}{3}$. The new amplitude of motion is $\frac{nA}{3}$. The value of n is
- 30. The mass defect in a particular reaction is 0.4 g. The amount of energy liberated is $n \times 10^7$ kWh, where n =_____. (speed of light = 3×10^8 m/s)

NTA ANSWERS													
1.	(1)	2.	(3)	3.	(1)	4.	(4)	5.	(4)	6.	(1)	7.	(2)
8.	(4)	9.	(2)	10.	(1)	11.	(1)	12.	(3)	13.	(2)	14.	(2)
15.	(4)	16.	(2)	17.	(3)	18.	(2)	19.	(2)	20.	(3)	21.	(5)
22.	(2)	23.	(1)	24.	(6)	25.	(2)	26.	(13)	27.	(128)	28.	(18)
29.	(7)	30.	(1)										

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020