JEE (ADVANCED) EXAM-2025

MATHEMATICS (PAPER-1)

SECTION - 1: (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 If **ONLY** the correct option is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

1. Let \mathbb{R} denote the set of all real numbers. Let $a_i, b_i \in \mathbb{R}$ for $i \in \{1, 2, 3\}$.

Define the functions $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$, and $h: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = a_1 + 10x + a_2x^2 + a_3x^3 + x^4$$

$$g(x) = b_1 + 3x + b_2 x^2 + b_3 x^3 + x^4$$

$$h(x) = f(x+1) - g(x+2)$$

If $f(x) \neq g(x)$ for every $x \in \mathbb{R}$, then the coefficient of x^3 in h(x) is

(A) 8

(B) 2

(C) -4

- (D) -6
- **2.** Three students S_1, S_2 , and S_3 are given a problem to solve. Consider the following events:

 $\boldsymbol{U}\,$: At least one of $\,S_{\!\scriptscriptstyle 1},S_{\!\scriptscriptstyle 2}$, and $\,S_{\!\scriptscriptstyle 3}\,$ can solve the problem,

 $V:S_1$ can solve the problem, given that neither S_2 nor S_3 can solve the problem,

 $W: S_2$ can solve the problem and S_3 cannot solve the problem,

 $T:S_3$ can solve the problem.

For any event E, let P(E) denote the probability of E. If

$$P(U) = \frac{1}{2}$$
, $P(V) = \frac{1}{10}$, and $P(W) = \frac{1}{12}$ then P(T) is equal to

(A) $\frac{13}{36}$

(B) $\frac{1}{3}$

(C) $\frac{19}{60}$

(D) $\frac{1}{4}$

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

3. Let \mathbb{R} denote the set of all real numbers. Define the function $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 2 - 2x^2 - x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 2 & \text{if } x = 0 \end{cases}$$

Then which one of the following statements is TRUE?

- (A) The function f is NOT differentiable at x = 0
- (B) There is a positive real number δ , such that f is a decreasing function on the interval $(0, \delta)$
- (C) For any positive real number δ , the function f is NOT an increasing function on the interval $(-\delta,0)$
- (D) x = 0 is a point of local minima of f
- **4.** Consider the matrix

$$P = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Let the transpose of a matrix X be denoted by X^T . Then the number of 3×3 invertible matrices Q with integer entries, such that $Q^{-1}=Q^T$ and PQ=QP is

- (A) 32
- (B) 8
- (C) 16
- (D) 24

SECTION - 2: (Maximum Marks: 12)

- This section contains THREE (3) questions
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks: +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks: +2 If three or more options are correct but ONLY two options are chosen, both of which are correct:

Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

OFFICE Address: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option (i.e. the question is unanswered) will get 0 marks;

5. Let L_1 be the line of intersection of the planes given by the equations

$$2x+3y+z=4 \text{ and } x+2y+z=5$$

Let L_2 be the line passing through the point P(2,-1,3) and parallel to L_1 . Let M denote the plane given by the equation

$$2x + y - 2z = 6$$

Suppose that the line L_2 meets the plane M at the point Q. Let R be the foot of the perpendicular drawn from P to the plane M .

Then which of the following statements is (are) TRUE?

- (A) The length of the line segment PQ is $9\sqrt{3}$
- (B) The length of the line segment QR is 15
- (C) The area of $\triangle PQR$ is $\frac{3}{2}\sqrt{234}$
- (D) The acute angle between the line segments PQ and PR is $\cos^{-1}\left(\frac{1}{2\sqrt{3}}\right)$
- **6.** Let $\mathbb N$ denote the set of all natural numbers, and $\mathbb Z$ denote the set of all integers. Consider the functions $f:\mathbb N\to\mathbb Z$ and $g:\mathbb Z\to\mathbb N$ defined by

$$f(n) = \begin{cases} (n+1)/2 & \text{if } n \text{ is odd} \\ (4-n)/2 & \text{if } n \text{ is even} \end{cases}$$

and
$$g(n) = \begin{cases} 3+2n & \text{if } n \ge 0 \\ -2n & \text{if } n < 0 \end{cases}$$

Define $(g^{\circ}f)(n) = g(f(n))$ for all $n \in \mathbb{N}$, and $(f^{\circ}g)(n) = f(g(n))$ for all $n \in \mathbb{Z}$.

Then which of the following statements is (are) TRUE?

- (A) $g^{\circ}f$ is NOT one-one and $g^{\circ}f$ is NOT onto
- (B) $f^{\circ}g$ is NOT one-one but $f^{\circ}g$ is onto
- (C) g is one-one and g is onto
- (D) f is NOT one-one but f is onto

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

7. Let \mathbb{R} denote the set of all real numbers. Let $z_1 = 1 + 2i$ and $z_2 = 3i$ be two complex numbers, where

$$i=\sqrt{-1} \text{ . Let } S=\left\{(x,y)\in\mathbb{R}\times\mathbb{R}:\left|x+iy-z_1\right|=2\left|x+iy-z_2\right|\right\}$$

Then which of the following statements is (are) TRUE?

- (A) S is a circle with centre $\left(-\frac{1}{3}, \frac{10}{3}\right)$
- (B) S is a circle with centre $\left(\frac{1}{3}, \frac{8}{3}\right)$
- (C) S is a circle with radius $\frac{\sqrt{2}}{3}$
- (D) S is a circle with radius $\frac{2\sqrt{2}}{3}$

SECTION - 3: (Maximum Marks: 30)

- This section contains SIX (06) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 If ONLY the correct numerical value is entered in the designated place;

Zero Marks: 0 In all other cases.

Let the set of all relations R on the set $\{a,b,c,d,e,f\}$, such that R is reflexive and symmetric, and R contains exactly 10 elements, be denoted by S.

Then the number of elements in S is _____.

9. For any two points M and N in the XY-plane, let \overline{MN} denote the vector from M to N, and $\overrightarrow{0}$ denote the zero vector. Let P, Q and R be three distinct points in the XY-plane. Let S be a point inside the triangle ΔPQR such that

$$\overrightarrow{SP} + 5\overrightarrow{SQ} + 6\overrightarrow{SR} = \overrightarrow{0}$$

Let $\,E\,$ and $\,F\,$ be the mid-points of the sides PR and QR, respectively. Then the value of

 $\frac{\text{length of the line segment } EF}{\text{length of the line segment } ES} \text{ is } \underline{\hspace{2cm}}$

10. Let S be the set of all seven-digit numbers that can be formed using the digits 0,1 and 2 . For example, 2210222 is in S, but 0210222 is **NOT** in S.

Then the number of elements x in S such that at least one of the digits 0 and 1 appears exactly twice in x, is equal to ______.

11. Let α and β be the real numbers such that $\lim_{x\to 0} \frac{1}{x^3} \left(\frac{\alpha}{2} \int_0^x \frac{1}{1-t^2} dt + \beta x \cos x \right) = 2$

Then the value of $\alpha + \beta$ is _____.

12. Let \mathbb{R} denote the set of all real numbers. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x) > 0 for all $x \in \mathbb{R}$, and f(x+y) = f(x)f(y) for all $x, y \in \mathbb{R}$.

Let the real numbers $a_1,a_2,...,a_{50}$ be in an arithmetic progression. If $f\left(a_{31}\right)=64f\left(a_{25}\right)$, and

$$\sum_{i=1}^{50} f(a_i) = 3(2^{25} + 1) \text{ then the value of } \sum_{i=6}^{30} f(a_i) \text{ is } \underline{\hspace{1cm}}.$$

13. For all x > 0, let $y_1(x), y_2(x)$, and $y_3(x)$ be the functions satisfying

$$\frac{dy_1}{dx} - (\sin x)^2 y_1 = 0, \quad y_1(1) = 5$$

$$\frac{dy_2}{dx} - (\cos x)^2 y_2 = 0, \quad y_2(1) = \frac{1}{3}$$

$$\frac{dy_3}{dx} - \left(\frac{2-x^3}{x^3}\right)y_3 = 0, \quad y_3(1) = \frac{3}{5e}$$

respectively. Then

$$\lim_{x \to 0^{+}} \frac{y_{1}(x)y_{2}(x)y_{3}(x) + 2x}{e^{3x} \sin x}$$

is equal to _____.

SECTION-4 (Maximum Marks: 12)

- This section contains THREE (03) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 ONLY if the option corresponding to the correct combination is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

OFFICE Address: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

Consider the following frequency distribution:

Value	4	5	8	9	6	12	11
Frequency	5	f_1	f_2	2	1	1	3

Suppose that the sum of the frequencies is 19 and the median of this frequency distribution is 6.

For the given frequency distribution, let α denote the mean deviation about the mean, β denote the mean deviation about the median, and σ^2 denote the variance.

List-II

(1) 146

(2)47

(3)48

(4) 145(5)55

Match each entry in List-I to the correct entry in List-II and choose the correct option.

List-I

(P) $7f_1 + 9f_2$ is equal to

(Q) 19α is equal to

(R) 19β is equal to

(S) $19\sigma^2$ is equal to

(A) (P) \to (5) (Q) \to (3) (R) \to (2) (S) \to (4)

(B) (P) \rightarrow (5) (Q) \rightarrow (2) (R) \rightarrow (3) (S) \rightarrow (1)

(C) (P) \rightarrow (5) (Q) \rightarrow (3) (R) \rightarrow (2) (S) \rightarrow (1) (D) (P) \rightarrow (3) (Q) \rightarrow (2) (R) \rightarrow (5) (S) \rightarrow (4)

15. Let \mathbb{R} denote the set of all real numbers. For a real number x, let [x] denote the greatest integer less than or equal to x. Let n denote a natural number.

Match each entry in List-I to the correct entry in List-II and choose the correct option.

List-I

List-II (1) 8

(2)9

(3)5

(P) The minimum value of n for which the

function $f(x) = \left[\frac{10x^3 - 45x^2 + 60x + 35}{n} \right]$

is continuous on the interval [1,2], is

(Q) The minimum value of n for which

 $q(x)=(2n^2-13n-15)(x^3+3x)$

 $x \in \mathbb{R}$, is an increasing function on \mathbb{R} , is

(R) The smallest natural number n which is greater than 5, such that x=3 is a point of local minima of $h(x) = (x^2 - 9)^n(x^2 + 2x + 3)$, is

(S) Number of $x_0 \in \mathbb{R}$ such that

(4)6

$$l(x) = \sum_{k=0}^{4} \left(\sin|x - k| + \cos|x - k + \frac{1}{2}| \right),$$

 $x \in \mathbb{R}$, is **NOT** differentiable at x_0 , is

(5)10

 $\text{(A) (P)} \rightarrow \text{(1) (Q)} \rightarrow \text{(3) (R)} \rightarrow \text{(2) (S)} \rightarrow \text{(5)} \qquad \text{(B) (P)} \rightarrow \text{(2) (Q)} \rightarrow \text{(1) (R)} \rightarrow \text{(4) (S)} \rightarrow \text{(3)}$

(C) (P) \rightarrow (5) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (3)

(D) (P) \to (2) (Q) \to (3) (R) \to (1) (S) \to (5)

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020 **16.** Let $\vec{w} = \hat{\imath} + \hat{\jmath} - 2\hat{k}$, and \vec{u} and \vec{v} be two vectors, such that $\vec{u} \times \vec{v} = \vec{w}$ and $\vec{v} \times \vec{w} = \vec{u}$. Let α, β, γ , and t be real numbers such that

$$\vec{u} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}, \quad -t\alpha + \beta + \gamma = 0, \quad \alpha - t\beta + \gamma = 0, \quad \text{and } \alpha + \beta - t\gamma = 0$$

Match each entry in List-I to the correct entry in List-II and choose the correct option.

List-I

List-II

(P)
$$|\vec{v}|^2$$
 is equal to

(1) 0

(Q) If
$$\alpha = \sqrt{3}$$
, then γ^2 is equal to

(R) If
$$\alpha = \sqrt{3}$$
, then $(\beta + \gamma)^2$ is equal to

(S) If
$$\alpha = \sqrt{2}$$
 , then $t+3$ is equal to

(A) (P)
$$\rightarrow$$
 (2) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (5)

(B) (P)
$$\rightarrow$$
 (2) (Q) \rightarrow (4) (R) \rightarrow (3) (S) \rightarrow (5)

(C) (P)
$$\rightarrow$$
 (2) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (3)

(D) (P)
$$\rightarrow$$
 (5) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (3)

	NTA FINAL ANSWERS													
1.	(C)	2.	(A)	3.	(C)	4.	(C)	5.	(A,C)					
6.	(A,D)	7.	(A,D)	8.	105	9.	1.15 to 1.25	10.	762					
11.	2.35 to 2.45	12.	96	13.	2	14.	(C)	15.	(B)					
	(4)													

16. (A)

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020