JEE (ADVANCED)-2024

PAPER-1

CHEMISTRY

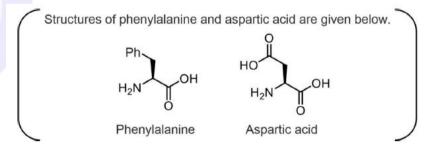
SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 If **ONLY** the correct option is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: 1 In all other cases.


- 1. A closed vessel contains 10 g of an ideal gas X at 300 K, which exerts 2 atm pressure. At the same temperature, 80 g of another ideal gas Y is added to it and the pressure becomes 6 atm. The ratio of root mean square velocities of X and Y at 300 K is
 - (A) $2\sqrt{2}:\sqrt{3}$

- (B) $2\sqrt{2}:1$
- (C) 1:2
- (D) 2:1
- 2. At room temperature, disproportionation of an aqueous solution of in situ generated nitrous acid $\left(\text{HNO}_{2}\right)$ gives the species
 - (A) H_3O^+ , NO_3^- and NO

(B) H_3O^+ , NO_3^- and NO_2

(C) H_3O^+ , NO^- and NO_2

- (D) H_3O^+ , NO_3^- and N_2O
- 3. Aspartame, an artificial sweetener, is a dipeptide aspartyl phenylalanine methyl ester. The structure of aspartame is

$$(A) \underset{H_2N}{H_2N} \xrightarrow{Ph} OMe$$

$$(B) \underset{H_2N}{H_2N} \xrightarrow{H} OMe$$

$$(C) \underset{O}{H_2N} \xrightarrow{H} OH$$

$$(D) \underset{Ph}{H_2N} OH$$

4. Among the following options, select the option in which each complex in Set-I shows geometrical isomerism and the two complexes in Set-II are ionization isomers of each other.

[en =
$$H_2NCH_2CH_2NH_2$$
]

(A) Set-I:
$$\left[Ni(CO)_4\right]$$
 and $\left\lceil PdCl_2\left(PPh_3\right)_2\right\rceil$

Set-II:
$$\left[\text{Co}\big(\text{NH}_3\big)_{\!\scriptscriptstyle 5}\,\text{Cl}\right]\!\text{SO}_4$$
 and $\left[\text{Co}\big(\text{NH}_3\big)_{\!\scriptscriptstyle 5}\big(\text{SO}_4\big)\right]\!\text{Cl}$

(B) Set-I:
$$\left[\text{Co(en)} \left(\text{NH}_3 \right)_2 \text{Cl}_2 \right]$$
 and $\left[\text{PdCl}_2 \left(\text{PPh}_3 \right)_2 \right]$

$$\text{Set-II:} \left\lceil \text{Co} \left(\text{NH}_3 \right)_6 \right\rceil \! \left[\text{Cr} (\text{CN})_6 \right] \text{ and } \left\lceil \text{Cr} \left(\text{NH}_3 \right)_6 \right\rceil \! \left[\text{Co} (\text{CN})_6 \right]$$

(C) Set-I:
$$\left[\operatorname{Co}\left(\operatorname{NH}_3\right)_3\left(\operatorname{NO}_2\right)_3\right]$$
 and $\left[\operatorname{Co}(en)_2\operatorname{Cl}_2\right]$

Set-II:
$$\Big[\text{Co} \big(\text{NH}_3 \big)_{\!\!5} \, \text{Cl} \Big] \text{SO}_4$$
 and $\Big[\text{Co} \big(\text{NH}_3 \big)_{\!\!5} \big(\text{SO}_4 \big) \Big] \text{Cl}$

(D) Set-I:
$$\left[Cr \left(NH_3 \right)_5 Cl \right] Cl_2$$
 and $\left[Co(en) \left(NH_3 \right)_2 Cl_2 \right]$

Set
$$-II : \left[Cr(H_2O)_6 \right] Cl_3$$
 and $\left[Cr(H_2O)_5 Cl \right] Cl_2 \cdot H_2O$

SECTION 2 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 **ONLY** if (all) the correct option(s) is(are) chosen;

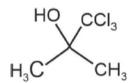
Partial Marks: +3 If all the four options are correct but **ONLY** three options are chosen;

Partial Marks: + 2 If three or more options are correct but **ONLY** two options are chosen, both of which

are correct;

Partial Marks: +1 If two or more options are correct but **ONLY** one option is chosen and it is a correct

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);


Negative Marks: -2 In all other cases.

- 5. Among the following the correct statement(s) for electrons in an atom is(are)
 - (A) Uncertainty principle rules out the existence of definite paths for electrons.
 - (B) The energy of an electron in 2s orbital of an atom is lower than the energy of an electron that is infinitely far away from the nucleus.
 - (C) According to Bohr's model, the most negative energy value for an electron is given by n=1, which corresponds to the most stable orbit.
 - (D) According to Bohr's model, the magnitude of velocity of electrons increases with increase in values of n..
- **6.** Reaction of iso-propylbenzene with O_2 followed by the treatment with H_3O^+ forms phenol and a by-product
 - ${\bf P}$. Reaction of ${\bf P}$ with 3 equivalents of ${\rm Cl}_2$ gives compound ${\bf Q}$. Treatment of ${\bf Q}$ with ${\rm Ca(OH)}_2$ produces compound ${\bf R}$ and calcium salt ${\bf S}$.

The correct statement(s) regarding P,Q,R and S is(are)

(A) Reaction of \mathbf{P} with \mathbf{R} in the presence of KOH followed by acidification gives

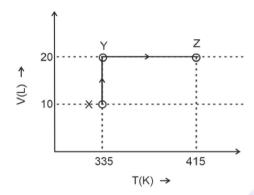
- (B) Reaction of ${\bf R}$ with ${\bf O}_2$ in the presence of light gives phospene gas
- (C) Q reacts with aqueous NaOH to produce Cl₃CCH₂OH and Cl₃CCOONa
- (D) S on heating gives P
- 7. The option(s) in which at least three molecules follow Octet Rule is(are)
 - (A) CO_2 , C_2H_4 , NO and HCl

(B) NO_2, O_3, HCl and H_2SO_4

(C) BCl_3 , NO, NO_2 and H_2SO_4

(D) CO_2 , BCl_3 , O_3 and C_2H_4

SECTION 3 (Maximum Marks: 24)


- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 If **ONLY** the correct integer is entered;

Zero Marks: 0 In all other cases.

8. Consider the following volume-temperature (V-T) diagram for the expansion of 5 moles of an ideal monoatomic gas.

Considering only P-V work is involved, the total change in enthalpy (in Joule) for the transformation of state in the sequence $X \to Y \to Z$ is

[Use the given data: Molar heat capacity of the gas for the given temperature range, $C_{\rm V,m}=12\rm J\,K^{-1}\,mol^{-1}$ and gas constant, $R=8.3\rm J\,K^{-1}\,mol^{-1}$

9. Consider the following reaction,

$$2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$$

which follows the mechanism given below:

$$2NO(g) \stackrel{k_1}{\longleftarrow} [k_{-1}] k_1 N_2 O_2(g)$$

(fast equilibrium)

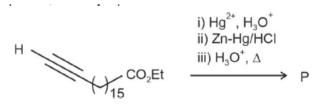
$$N_2O_2(g) + H_2(g) \xrightarrow{k_2} N_2O(g) + H_2O(g)$$

(slow reaction)

$$N_2O(g) + H_2(g) \xrightarrow{k_3} N_2(g) + H_2O(g)$$

(fast reaction)

The order of the reaction is _____?


10. Complete reaction of acetaldehyde with excess formaldehyde, upon heating with conc. NaOH solution, gives \mathbf{P} and \mathbf{Q} . Compound \mathbf{P} does not give Tollens' test, whereas \mathbf{Q} on acidification gives positive Tollens' test. Treatment of \mathbf{P} with excess cyclohexanone in the presence of catalytic amount of p -toluenesulfonic acid (PTSA) gives product R.

Sum of the number of methylene groups $(-CH_2 -)$ and oxygen atoms in $\bf R$ is _____.

11. Among $V(CO)_6$, $Cr(CO)_5$, $Cu(CO)_3$, $Mn(CO)_5$, $Fe(CO)_5$, $\left[Co(CO)_3\right]^{3-}$, $\left[Cr(CO)_4\right]^{4-}$, and $Ir(CO)_3$, the total number of species isoelectronic with $Ni(CO)_4$ is

[Given atomic number : V = 23, Cr, = 24, Mn = 25, Fe = 26, Co = 27, Ni = 28, Cu = 29, Ir = 77]

12. In the following reaction sequence, the major product P is formed.

Glycerol reacts completely with excess ${\bf P}$ in the presence of an acid catalyst to form ${\bf Q}$. Reaction of ${\bf Q}$ with excess NaOH followed by the treatment with ${\bf CaCl}_2$ yields ${\bf Ca}$ -soap ${\bf R}$, quantitatively. Starting with one mole of ${\bf Q}$, the amount of ${\bf R}$ produced in gram is

[Given, atomic weight:
$$H = 1, C = 12, N = 14, O = 16, Na = 23, Cl = 35, Ca = 40$$
]

13. Among the following complexes, the total number of diamagnetic species is _____.

$$\left\lceil Mn \left(NH_{3}\right)_{6}^{}\right\rceil^{3+}, \left\lceil MnCl_{6}^{}\right\rceil^{3-}, \left\lceil FeF_{6}^{}\right\rceil^{3-}, \left\lceil CoF_{6}^{}\right\rceil^{3-}, \left\lceil Fe \left(NH_{3}\right)_{6}^{}\right\rceil^{3+} \text{ and } \left[Co(en)_{3}^{}\right]^{3+}$$

[Given, atomic number: Mn = 25, Fe = 26, Co = 27; en $= H_2NCH_2CH_2NH_2$]

SECTION 4 (Maximum Marks: 12)

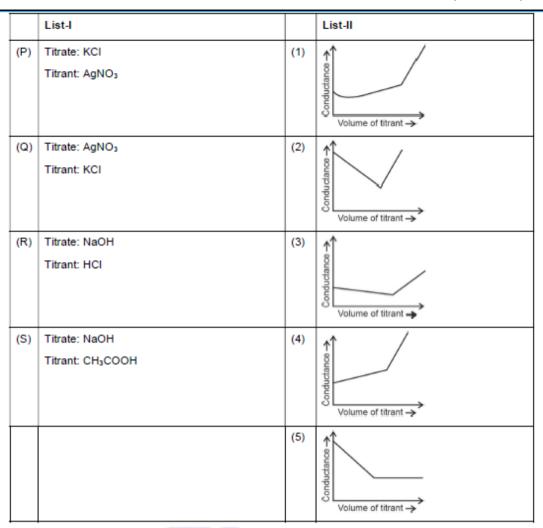
- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-II and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 ONLY if the option corresponding to the correct combination is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: 1 In all other cases.

14. In a conductometric titration, small volume of titrant of higher concentration is added stepwise to a larger volume of titrate of much lower concentration, and the conductance is measured after each addition.


The limiting ionic conductivity (Λ_0) values (in $mSm^2 mol^{-1}$) for different ions in aqueous solutions are given below:

lons	Ag ⁺	K ⁺	Na⁺	H ⁺	NO ₃	CI-	SO ₄ ²⁻	OH-	CH ₃ COO-
Λ_0	6.2	7.4	5.0	35.0	7.2	7.6	16.0	19.9	4.1

For different combinations of titrates and titrants given in List-I, the graphs of 'conductance' versus 'volume of titrant' are given in List-II.

Match each entry in List-II with the appropriate entry in List-II and choose the correct option.

(A) P-4, Q-3, R-2, S-5

(B) P-2, Q-4, R-3, S-1

(C) P-3, Q-4, R-2, S-5

- (D) P-4, Q-3, R-2, S-1
- **15.** Based on VSEPR model, match the xenon compounds given in List-I with the corresponding. geometries and the number of lone pairs on xenon given in List-II and choose the correct option.

	List-l		List-II
(P)	XeF ₂	(1)	Trigonal bipyramidal and two lone pair of electrons
(Q)	XeF ₄	(2)	Tetrahedral and one lone pair of electrons
(R)	XeO ₃	(3)	Octahedral and two lone pair of electrons
(S)	XeO ₃ F ₂	(4)	Trigonal bipyramidal and no lone pair of electrons
		(5)	Trigonal bipyramidal and three lone pair of electrons

(A) P-5, Q-2, R-3, S-1

(B) P-5, Q-3, R-2, S-4

(C) P-4, Q-3, R-2, S-1

(D) P-4, Q-2, R-5, S-3

16. List-I contains various reaction sequences and List-II contains the possible products. Match each entry in List-II with the appropriate entry in List-II and choose the correct option.

	List-I		List-II
(P)	i) O ₃ , Zn ii) aq. NaOH, Δ iii) ethylene glycol, PTSA iv) a) BH ₃ , b) H ₂ O ₂ , NaOH v) H ₃ O ⁺ vi) NaBH ₄	(1)	HO CH ₃
(Q)	i) O ₃ , Zn ii) aq. NaOH, Δ iii) ethylene glycol, PTSA iv) a) BH ₃ , b) H ₂ O ₂ , NaO v) H ₃ O ⁺ vi) NaBH ₄		CH ₃

(R)	O CH ₃	i) ethylene glycol, PTSA	(3)	ОН
		ii) a) $\rm Hg(OAc)_2$, $\rm H_2O$, b) $\rm NaBH_4$ iii) $\rm H_3O^+$ iv) $\rm NaBH_4$		ОН
(S)	O CH ₃	i) ethylene glycol, PTSA ii) a) BH ₃ , b) H ₂ O ₂ , NaOH iii) H ₃ O ⁺ iv) NaBH ₄	(4)	HO CH ₃ OH
			(5)	CH₃ OH
				OH

- (A) P-3, Q-5, R-4, S-1
- (B) P-3, Q-2, R-4, S-1
- (C) P-3, Q-5, R-1, S-4
- (D) P-5, Q-2, R-4, S-1

17. List-I contains various reaction sequences and List-II contains different phenolic compounds. Match each entry in List-I with the appropriate entry in List-II and choose the correct option.

				1
	List-l			List-II
(P)	SO ₃ H	(i) molten NaOH, H₃O* (ii) Conc. HNO₃	(1)	O ₂ N NO ₂
(Q)	NO ₂	(i) Conc. HNO₃/ Conc. H₂SO₄ (ii) Sn/HCI (iii) NaNO₂/HCI, 0-5°C, (iv) H₂O (v) Conc. HNO₂/ Conc. H₂SO₄	(2)	OH NO ₂
(R)	ОН	(i) Conc. H₂SO₄ (ii) Conc. HNO₃ (iii) H₃O°, Δ	(3)	O ₂ N NO ₂
(S)	Me	(i) (a) KMnO ₄ /KOH, ∆; (b) H ₃ O ⁺ (ii) Conc. HNO ₃ / Conc. H ₂ SO ₄ , ∆ (iii) (a) SOCl ₂ , (b) NH ₃ (iv) Br ₂ , NaOH (v) NaNO ₂ /HCl, 0-5°C (vi) H ₂ O	(4)	OH NO ₂ OH
			(5)	O ₂ N NO ₂ OH NO ₂

(A) P-2, Q-3, R-4, S-5

(B) P-2, Q-3, R-5, S-1

(C) P-3, Q-5, R-4, S-1

(D) P-3, Q-2, R-5, S-4

ANSWER KEY

1. (D) 2. (A) 3. (B) 4. (C) 5. (A, B, C) 6. (A, B, D) 7. 8. 8120 10. 12. 909 (A, D) 9. 3 18 11. 1 13. (C) 17. (C) 14. 15. (B) 16. (A)

