JEE (ADVANCED)-2024

MATHEMATICS

SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 If ONLY the correct option is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: 1 In all other cases.

- 1. Considering only the principal values of the inverse trigonometric functions, the value of $\tan\left(\sin^{-1}\left(\frac{3}{5}\right) - 2\cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\right)$ is

 - (A) $\frac{7}{24}$ (B) $\frac{-7}{24}$ (C) $\frac{-5}{24}$
- Let $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \ge 0, y \ge 0, y^2 \le 4x, y^2 \le 12 2x \text{ and } 3y + \sqrt{8}x \le 5\sqrt{8} \}$. If the area of the 2. region S is $\alpha\sqrt{2}$, then α is equal to
- (B) $\frac{17}{3}$ (C) $\frac{17}{4}$
- (D) $\frac{17}{5}$
- Let $k \in R$. If $\lim (\sin(\sin kx) + \cos x + x)^{\frac{2}{x}} = e^6$, then the value of k is
 - (A) 1

(B)2

(C)3

(D) 4

Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by 4.

$$f(x) = \begin{cases} x^2 \sin\left(\frac{\pi}{x^2}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Then which of the following statements is TRUE?

(A) f(x) = 0 has infinitely many solutions in the interval $\left[\frac{1}{10^{10}}, \infty\right]$.

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

- (B) f(x) = 0 has no solutions in the interval
- (C) The set of solutions of f(x) = 0 in the interval $\left(0, \frac{1}{10^{10}}\right)$ is finite.
- (D) f(x) = 0 has more than 25 solutions in the interval $\left(\frac{1}{\pi^2}, \frac{1}{\pi}\right)$

SECTION 2 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are)

correct answer(s).

- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks: +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks: + 2 If three or more options are correct but ONLY two options are chosen, both of which are correct:

Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks: 0 If unanswered;

Negative Marks: -2 In all other cases.

5. Let S be the set of all $(\alpha, \beta) \in R \times R$ such that

$$\lim_{x \to \infty} \frac{\sin(x^2)(\log_e x)^{\alpha} \sin(\frac{1}{x^2})}{x^{\alpha\beta} (\log_e (1+x))^{\beta}} = 0$$

Then which of the following is (are) correct?

(A)
$$(-1,3) \in S$$

(B)
$$(-1,1) \in S$$

(C)
$$(1,-1) \in S$$

(C)
$$(1,-1) \in S$$
 (D) $(1,-2) \in S$

A straight line drawn from the point P(1,3,2), parallel to the line $\frac{x-2}{1} = \frac{y-4}{2} = \frac{z-6}{1}$, intersects the 6. plane $L_1: x-y+3z=6$ at the point Q. Another straight line which passes through Q and is perpendicular to the plane L_1 intersects the plane $L_2:2x-y+z=-4$ at the point R. Then which of the following statements is(are) TRUE?

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

- (A) The length of the line segment PQ is $\sqrt{6}$
- (B) The coordinates of R are (1,6,3)
- (C) The centroid of the triangle PQR is $\left(\frac{4}{3}, \frac{14}{3}, \frac{5}{3}\right)$
- (D) The perimeter of the triangle PQR is $\sqrt{2} + \sqrt{6} + \sqrt{11}$
- Let A_1, B_1, C_1 be three points in the xy-plane. Suppose that the lines A_1C_1 and B_1C_1 are tangents to the curve $y^2 = 8x$ at A_1 and B_1 , respectively. If O = (0,0) and $C_1 = (-4,0)$, then which of the following statements is (are) TRUE?
 - (A) The length of the line segment OA_1 is $4\sqrt{3}$
 - (B) The length of the line segment $A_{\rm l}B_{\rm l}$ is 16
 - (C) The orthocentre of the triangle $A_{\rm l}B_{\rm l}C_{\rm l}$ is (0,0)
 - (D) The orthocentre of the triangle $A_{\rm l}B_{\rm l}C_{\rm l}$ is (1,0)

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 If ONLY the correct integer is entered;

Zero Marks: 0 In all other cases.

Let $f: R \to R$ be a function such that f(x+y) = f(x) + f(y) for all $x, y \in R$, and $g: R \to (0, \infty)$ be a function such that g(x+y) = g(x)g(y) for all $x, y \in R$. If $f\left(\frac{-3}{5}\right) = 12$ and $g\left(\frac{-1}{3}\right) = 2$, then the value of $\left(f\left(\frac{1}{4}\right) + g(-2) - 8\right)g(0)$ is

- A bag contains N balls out of which 3 balls are white, 6 balls are green, and the remaining balls are blue. Assume that the balls are identical otherwise. Three balls are drawn randomly one after the other without replacement. For i=1,2,3, let W_i, G_i, and B_i denote the events that the ball drawn in the i^{th} draw is a white ball, green ball, and blue ball, respectively, If the probability $P(W_1 \cap G_2 \cap B_3) = \frac{2}{5N}$ and the conditional probability $P(B_3 * W_1 \cap G_2) = \frac{2}{9}$, then N equals........
- **10.** Let the function $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \frac{\sin x}{e^{\pi x}} \frac{\left(x^{2023} + 2024x + 2025\right)}{\left(x^2 - x + 3\right)} + \frac{2}{e^{\pi x}} \frac{\left(x^{2023} + 2024x + 2025\right)}{\left(x^2 - x + 3\right)}$$

Then the number of solutions of f(x) = 0 in R is

- 11. Let $\vec{p}=2\hat{i}+\hat{j}+3\hat{k}$ and $\vec{q}=\hat{i}-\hat{j}+\hat{k}$. If for some real numbers α,β and γ , we have $15\hat{i}+10\hat{j}+6\hat{k}=\alpha(2\vec{p}+\vec{q})+\beta(\vec{p}-2\vec{q})+\gamma(\vec{p}\times\vec{q}), \text{ then the value of } \gamma \text{ is}$
- 12. A normal with slope $\frac{1}{\sqrt{6}}$ is drawn from the point $(0,-\alpha)$ to the parabola $x^2=-4ay$, where a>0. Let L be the line passing through $(0,-\alpha)$ and parallel to the directrix of the parabola. Suppose that L intersects the parabola at two points A and B. Let r denote the length of the latus rectum and s denote the square of the length of the line segment AB. If r:s=1:16, then the value of 24a is____
- 13. Let the function $f:[1,\infty)\to R$ be defined by

$$f(t) = \begin{cases} (-1)^{n+1} 2, & \text{if } t = 2n-1, n \in \mathbb{N}, \\ \frac{(2n+1-t)}{2} f(2n-1) + \frac{(t-(2n-1))}{2} f(2n+1), & \text{if } 2n-1 < t < 2n+1, n \in \mathbb{N}. \end{cases}$$

Define $g(x) = \int_1^x f(t)dt$, $x \in (1, \infty)$. Let α denote the number of solutions of the equation g(x) = 0 in the interval

(1,8] and $\beta = \lim_{x \to 1^+} \frac{g(x)}{x-1}$. Then the value of $\alpha + \beta$ is equal to

SECTION 4 (Maximum Marks: 12)

- This section contains TWO (02) paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 If ONLY the correct numerical value is entered in the designated place;

Zero Marks: 0 In all other cases.

PARAGRAPH - I

Let $S = \{1, 2, 3, 4, 5, 6\}$ and X be the set of all relations R from S to S that satisfy both the following properties:

- i. R has exactly 6 elements.
- ii. For each $(a,b) \in R$, we have $|a-b| \ge 2$.

Let $Y = \{R \in X : \text{The range of } R \text{ has exactly one element } \}$ and $Z = \{R \in X : R \text{ is a function from } S \text{ to } S \}$.

Let n(A) denote the number of elements in a set A.

(There are two questions based on PARAGRAPH "I", the question given below is one of them)

14. If $n(X) = {}^m C_6$, then the value of m is

PARAGRAPH - I

Let $S = \{1, 2, 3, 4, 5, 6\}$ and X be the set of all relations R from S to S that satisfy both the following properties:

- i. R has exactly 6 elements.
- ii. For each $(a,b) \in R$, we have $|a-b| \ge 2$.

Let $Y = \{R \in X : \text{The range of } R \text{ has exactly one element } \}$ and $Z = \{R \in X : R \text{ is a function from } S \text{ to } S \}$.

Let n(A) denote the number of elements in a set A.

(There are two questions based on PARAGRAPH "I", the question given below is one of them)

15. If the value of n(Y) + n(Z) is k^2 , then $|\mathbf{k}|$ is _____

PARAGRAPH II

Let $f: \left[0, \frac{\pi}{2}\right] \to [0,1]$ be the function defined by $f(x) = \sin^2 x$ and let $g: \left[0, \frac{\pi}{2}\right] \to [0, \infty)$ be the

function defined by $g(x) = \sqrt{\frac{\pi x}{2} - x^2}$.

(There are two questions based on PARAGRAPH "II", the question given below is one of them)

16. The value of $2\int_0^{\frac{\pi}{2}} f(x)g(x)dx - \int_0^{\frac{\pi}{2}} g(x)dx$ is

PARAGRAPH II

Let $f: \left[0, \frac{\pi}{2}\right] \to [0,1]$ be the function defined by $f(x) = \sin^2 x$ and let $g: \left[0, \frac{\pi}{2}\right] \to [0, \infty)$ be the

function defined by $g(x) = \sqrt{\frac{\pi x}{2} - x^2}$.

(There are two questions based on PARAGRAPH "II", the question given below is one of them)

17. The value of $\frac{16}{\pi^3} \int_0^{\frac{\pi}{2}} f(x)g(x)dx$ is

ANSWER KEY

1. (B) 2. (B) 3. (B) 4. (D) 5. (B,C) 6. (A,C) 7. (A, C)

8. 51 9. 11 10. 01 11. 2 12. 12 13. 5 14. 20

15. 36 16. 0 17. 0.25