PART - A (PAPER-2)_CHEMISTRY

SECTION 1 (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

- 1. According to Bohr's model, the highest kinetic energy is associated with the electron in the
 - (A) First orbit of H atom

(B) First orbit of He+

(C) Second orbit of He+

(D) Second orbit of Li2+

Ans. (B)

Sol. K.E. of electron in n^{th} Bohr's orbit,

K.E. =
$$13.6 \frac{Z^2}{n^2}$$
 eV/atom

$$n = 1(\text{H-atom}) \to \text{K.E.} \propto \frac{1^2}{1^2} = 1$$

$$n = 1 (\text{He}^+\text{ion}) \to \text{K.E.} \propto \frac{2^2}{1^2} = 4$$

$$n = 2(\text{He}^+\text{ion}) \to \text{K.E.} \propto \frac{2^2}{2^2} = 1$$

$$n = 2(\text{Li}^{2+} \text{ ion }) \rightarrow \text{K.E. } \propto \frac{3^2}{2^2} = \frac{9}{4}$$

Highest for $\rightarrow n = 1$ of He^+ ion.

- In a metal deficient oxide sample, Mx_2Y_4 (M and Y are metals), M is present in both +2 and +3 oxidation states and Y is in +3 oxidation state. If the fraction of \mathbf{M}^{2+} ions present in \mathbf{M} is $\frac{1}{3}$, the value of X is____
 - (A) 0.25
- (B) 0.33
- (C) 0.67
- (D) 0.75

Ans. (D)

Sol. $M_r Y_2 O_4$

$$M^{+2} = \frac{X}{3}, M^{+3} = \frac{2X}{3}$$

So, total of O.N. of all atoms

$$\frac{2X}{3} + 3\left(\frac{2X}{3}\right) + 2(+3) + 4(-2) = 0$$

$$\frac{2X}{3} + 2X + 6 - 8 = 0$$

$$\frac{8X}{3} = 2$$

$$X = \frac{6}{8} = \frac{3}{4} = 0.75$$

3. In the following reaction sequence, the major product Q is

L-Glucose ii) HI, Δ

Ans. (D)

Sol.

L-Glucose
$$C_6H_{12}O_6$$
 C_6H_{14} C_6H_{14} $C_6H_{12}O_6$ $C_6H_{12}O_6$

(BHC)

- 4. The species formed on fluorination of phosphorus pentachloride in a polar organic solvent are
 - (A) $\left[PF_4 \right]^+ \left[PF_6 \right]^-$ and $\left[PCl_4 \right]^+ \left[PF_6 \right]^-$
- (B) $\left[PCl_4\right]^{\!+}\!\left[PCl_4\,F_2\right]^{\!-}$ and $\left[PCl_4\right]^{\!+}\!\left[PF_6\right]^{\!-}$

(C) PF_3 and PCl_3

(D) PF_5 and PCl_3

Ans. (B)

Sol. If PCl₅ is fluorinated in a polar solvent, ionic isomers are formed. e.g.:-

 $[PCl_4]^+[PCl_4F_2]^-$ (colourless crystals)

and $[PCl_4]^+[PF_6]^-$ (white crystals)

SECTION 2 (Maximum Marks: 12)

- This section contains **THREE (03)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks: +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks: + 2 If three or more options are correct but **ONLY** two options are chosen, both of which are correct;

Partial Marks: +1 If two or more options are correct but **ONLY** one option is chosen and it is a correct option;

Zero Marks: 0 If unanswered;

Negative Marks: -2 In all other cases.

An aqueous solution of hydrazine (N_2H_4) is electrochemically oxidized by O_2 , thereby releasing chemical energy in the form of electrical energy. One of the products generated from the electrochemical reaction is $N_2(g)$.

Choose the correct statement(s) about the above process

- (A) OH^- ions react with N_2H_4 at the anode to form $N_2(g)$ and water, releasing 4 electrons to the anode.
- (B) At the cathode, N_2H_4 breaks to $N_2(g)$ and nascent hydrogen released at the electrode reacts with oxygen to form water.
- (C) At the cathode, molecular oxygen gets converted to OH⁻.
- (D) Oxides of nitrogen are major by-products of the electrochemical process.

Ans. (A,C)

Sol.

At anode: $N_2H_4 + 4OH^- \longrightarrow N_2 + 4H_2O + 4e^-$

At cathode: $O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$

Complete reaction: $N_2H_4 + O_2 \longrightarrow N_2 + 2H_2O$

Statements (A) and (C) are correct.

OFFICE ADDRESS: PLOT NUMBER 35, GOPALPURA BYPASS ROAD, NEAR RIDDHI SIDDHI CIRCLE, 10-B SCHEME, TRIVENI NAGAR, GOPAL PURA MODE, JAIPUR, RAJASTHAN 302020

Mob. 8888000021, 7410900901, 7410900906, 7410900907, 7410900908

www.competishun.com

6. The option(s) with correct sequence of reagents for the conversion of $\bf P$ to $\bf Q$ is(are)

- (A) i) Lindlar's catalyst, H_2 ; ii) $SnCl_2/HCl$; iii) $NaBH_4$; iv) H_3O^+
- (B) i) Lindlar's catalyst, H_2 ; ii) H_3O^+ ; iii) $SnCl_2/HCl$; iv) $NaBH_4$
- (C) i) $NaBH_4$; ii) $SnCl_2/HCl$; iii) H_3O^+ ; iv) Lindlar's catalyst, H_2
- (D) i) Lindlar's catalyst, H_2 ; ii) $NaBH_4$; iii) $SnCl_2$ / HCl; iv) H_3O^+

Ans. (A,C,D)

Sol.

(A)
$$COOEt$$
 $COOEt$ $COOET$

COOEt (ii) SnCl₂/HCl
$$\rightarrow$$
 CH = NH

$$\begin{array}{c} \text{NaBH}_4\\ \text{O}\\ \text{O}\\ \text{O}\\ \text{O}\\ \text{CH = NH} \end{array} \begin{array}{c} \text{OH}\\ \text{H}_5\text{O}^*\\ \text{O}\\ \text{HO} \end{array} \begin{array}{c} \text{OH}\\ \text{COOH}\\ \text{CHO}\\ \text{CHO} \end{array}$$

(C)
$$(P)$$
 $NaBH_4$ OH $COOEt$ $SnCl_2$ HCI $CH = NO$

$$\begin{array}{c} OH \\ \hline \\ H_3O^* \end{array} \begin{array}{c} OH \\ \hline \\ CHO \end{array} \begin{array}{c} Lindlar's \ catalyst \\ \hline \\ H_2 \end{array} \begin{array}{c} OG \\ \hline \end{array}$$

- (D) (P) $\xrightarrow{(i) \text{Lindlar's catalyst, H}_2; (ii) \text{NaBH}_4; (iii) \text{SnCI}_2/\text{HCI; (iv) H}_8\text{O}^+}$ (Q)
- 7. The compound(s) having peroxide linkage is(are)
 - (A) H₂S₂O₇
- (B) $H_2S_2O_8$
- (C) $H_2S_2O_5$
- (D) H₂SO₅

Ans. (B,D)

OFFICE ADDRESS: PLOT NUMBER 35, GOPALPURA BYPASS ROAD, NEAR RIDDHI SIDDHI CIRCLE, 10-B SCHEME, TRIVENI NAGAR, GOPAL PURA MODE, JAIPUR, RAJASTHAN 302020

Mob. 8888000021, 7410900901, 7410900906, 7410900907, 7410900908

www.competishun.com

Sol.

SECTION 3 (Maximum Marks: 24)

- This section contains **SIX (06)** questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases.

8. To form a complete monolayer of acetic acid on $1\,\mathrm{g}$ of charcoal, $100\,\mathrm{mL}$ of $0.5\mathrm{M}$ acetic acid was used. Some of the acetic acid remained unadsorbed. To neutralize the unadsorbed acetic acid, $40\,\mathrm{mL}$ of $1\mathrm{MNaOH}$ solution was required. If each molecule of acetic acid occupies $P \times 10^{-23}\,\mathrm{m}^2$ surface area on charcoal, the value of P is ______.

[Use given data : Surface area of charcoal = 1.5×10^2 m 2 g $^{-1}$; Avogadro's number $(N_A) = 6.0 \times 10^{23}$ mol $^{-1}$]

Ans. (2500)

Sol. Number of moles of unadsorbed $CH_3COOH = \frac{40 \times 1}{1000} = 4 \times 10^{-2} \text{ m}$

Number of moles of adsorbed $CH_3COOH = \frac{100 \times 0.5}{1000} - 4 \times 10^{-2}$

$$=10^{-2}$$
 mol

Surface area occupied by one molecule of

CH₃COOH =
$$\frac{1.5 \times 10^2}{10^{-2} \times 6 \times 10^{23}} = \frac{150 \times 10^2 \times 10^{-23}}{6}$$

$$=2500\times10^{-23}\,\mathrm{m}^2$$

 \therefore As per question P = 2500

OFFICE ADDRESS: PLOT NUMBER 35, GOPALPURA BYPASS ROAD, NEAR RIDDHI SIDDHI CIRCLE, 10-B SCHEME, TRIVENI NAGAR, GOPAL PURA MODE, JAIPUR, RAJASTHAN 302020

Mob. 8888000021, 7410900901, 7410900906, 7410900907, 7410900908

www.competishun.com

9. Vessel-1 contains $\mathbf{w}_2 g$ of a non-volatile solute \mathbf{X} dissolved in $\mathbf{w}_1 g$ of water. Vessel-2 contains $\mathbf{w}_2 g$ of another non-volatile solute \mathbf{Y} dissolved in $\mathbf{w}_1 g$ of water. Both the vessels are at the same temperature and pressure. The molar mass of \mathbf{X} is 80% of that of \mathbf{Y} . The van't Hoff factor for \mathbf{X} is 1.2 times of that of \mathbf{Y} for their respective concentrations.

The elevation of boiling point for solution in Vessel-1 is _____% of the solution in Vessel-2.

Ans. (150)

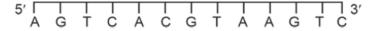
Sol. Vessel-I

$$\left(\Delta T_{\scriptscriptstyle B}\right)_{\scriptscriptstyle 1} = i_{\scriptscriptstyle X} \, \frac{w_{\scriptscriptstyle 2}}{M_{\scriptscriptstyle X}} \cdot \frac{1}{W_{\scriptscriptstyle 1}} \times 1000 \times K_{\scriptscriptstyle b}$$

 $M_x = \text{Molarmass of 'X'}$

Vessel-II

$$\left(\Delta T_{B}\right)_{\parallel I} = i_{Y} \frac{W_{2}}{M_{Y}} \cdot \frac{1}{W_{1}} \times 1000 \times K_{B}$$


 $M_v = \text{Molarmass of 'Y'}$

$$\frac{\left(\Delta T_{b}\right)_{l}}{\left(\Delta T_{b}\right)_{\parallel}} \times 100 = \frac{i_{X}}{i_{Y}} \cdot fracM_{Y}M_{X} \times 100$$

$$=1.2 \times \frac{100}{80} \times 100$$

$$=150\%$$

10. For a double strand DNA, one strand is given below:

The amount of energy required to split the double strand DNA into two single strands is $____kcalmol^{-1}$. [Given: Average energy per H-bond for A-T base pair $=1.0kcalmol^{-1}$, G-C base pair $=1.5kcalmol^{-1}$, and A-U base pair $=1.25kcalmol^{-1}$. Ignore electrostatic repulsion between the phosphate groups.]

Ans. (41)

Sol.

Total energy = [BE H-bond A – T × No. of A = T pair × 2] + [BE H-bond G – C × No. of G \equiv C pair × 3]

$$= [1 \times 7 \times 2] + [1.5 \times 6 \times 3]$$

$$= 14 + 27$$

$$=41 \text{ kcal}$$

11. A sample initially contains only U-238 isotope of uranium. With time, some of the U-238 radioactively decays into Pb-206 while the rest of it remains undisintegrated.

When the age of the sample is $\mathbf{P} \times 108$ years, the ratio of mass of Pb-206 to that of U-238 in the sample is found to be 7.

The value of **P** is_____.

[Given : Half-life of U-238 is 4.5×10^9 years; $\log_e 2 = 0.693$]

Ans. (143)

Sol. Life of sample $\rightarrow t$ years

 $[A]_0 \propto \text{Initial mole of U-238}$

 $[A]_t \propto \text{Final mole of U-238}$

$$\frac{[A]_0}{[A]_t} = \frac{\frac{1}{238} + \frac{7}{206}}{\frac{1}{238}}$$

$$=\frac{0.0042+0.0340}{0.0042}$$

= 9.1

$$=\frac{2.303\log 2\times t}{4.5\times10^9}=2.303\log 9.1$$

$$t = 14.27 \times 10^9 \text{ years}$$

$$= 142.7 \times 10^9 \text{ years}$$

$$P = 142.7$$

$$P \simeq 143$$

12. Among $\left[\operatorname{Co(CN)_4}\right]^4$, $\left[\operatorname{Co(CO)_3(NO_2)}\right]$, $\operatorname{XeF_4}$, $\left[\operatorname{PCl_4}\right]^+$, $\left[\operatorname{PdCl_4}\right]^2$, $\left[\operatorname{Cl_4}\right]^-$, $\left[\operatorname{Cu(CN)_4}\right]^{3-}$ and $\operatorname{P_4}$ the total number of species with tetrahedral geometry is _____.

Ans. (3)

Sol.

$$[Co(CN)_4]^{4-} \Rightarrow Co^0 \Rightarrow 3d^74s^2$$

Due to SFL, CN⁻ pairing and transference of electron takes place and hybridisation is dsp²

Geometry ⇒ Square planer

[Co(CO)₃NO]

 $\text{Co}^{-1} \Rightarrow 3d^{10}$ due to SFL CO and NO

sp³ hybridisation

$$XeF_4 \Rightarrow 4bp + 2lp \Rightarrow sp^3d^2$$

Square planer

 $PCl_4^+ \Rightarrow 4pb + 0lp$

 $sp^3 \Rightarrow \text{tetrahedral}$

CI CI

[PdCl₄]²⁻ ⇒ Pd²⁺, Cl⁻ behaves as SFL

 $Pd^{2+} \Rightarrow 4d^{8} \Rightarrow dsp^{2} \Rightarrow square planer$

CI Pd CI 2-

ICl₄⁻ ⇒ 4bp + 2lp

sp³d²

square planer

 $[Cu(CN)_4]^{3-} \Rightarrow Cu^{+1} \Rightarrow 3d^{10}$ $\Rightarrow so^3$

Tetrahedral

13. An organic compound **P** having molecular formula C₆H₆O₃ gives ferric chloride test and does not have intramolecular hydrogen bond. The compound **P** reacts with 3 equivalents of NH₂OH to produce oxime **Q**. Treatment of **P** with excess methyl iodide in the presence of KOH produces compound **R** as the major product.

Reaction of \mathbf{R} with excess *iso*-butylmagnesium bromide followed by treatment with H_3O_+ gives compound \mathbf{S} as the major product.

The total number of methyl (-CH₃) group(s) in compound **S** is _____.

Ans. (12)

Sol.

OFFICE ADDRESS: PLOT NUMBER 35, GOPALPURA BYPASS ROAD, NEAR RIDDHI SIDDHI CIRCLE, 10-B SCHEME, TRIVENI NAGAR, GOPAL PURA MODE, JAIPUR, RAJASTHAN 302020

Number of CH_3 groups = 12

SECTION 4 (Maximum Marks: 12)

- This section contains **TWO (02)** paragraphs.
- Based on each paragraph, there are **TWO (02)** questions.
- The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value of the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 If ONLY the correct numerical value is entered in the designated place;

Zero Marks : 0 In all other cases.

PARAGRAPH Question 14 to 15

An organic compound **P** with molecular formula C₉H₁₈O₂ decolorizes bromine water and also shows positive iodoform test. **P** on ozonolysis followed by treatment with H₂O₂ gives **Q** and **R**. While compound **Q** shows positive iodoform test, compound **R** does not give positive iodoform test. **Q** and **R** on oxidation with pyridinium chlorochromate (PCC) followed by heating give **S** and **T**, respectively. Both **S** and **T** show positive iodoform test.

Complete copolymerization of 500 moles of $\bf Q$ and 500 moles of $\bf R$ gives one mole of a single acyclic copolymer $\bf U$. [Given, atomic mass: $\bf H$ =1, $\bf C$ = 12, $\bf O$ =16]

14. Sum of number of oxygen atoms in **S** and **T** is _____.

Ans. (2)

OFFICE ADDRESS: PLOT NUMBER 35, GOPALPURA BYPASS ROAD, NEAR RIDDHI SIDDHI CIRCLE, 10-B SCHEME, TRIVENI NAGAR, GOPAL PURA MODE, JAIPUR, RAJASTHAN 302020

 ${\bf Mob.\ 8888000021,\ 7410900901,\ 7410900906,\ 7410900907,\ 7410900908}$

www.competishun.com

Sol.

Sum of number of O-atoms in **S** and T = 1 + 1 = 2

15. The molecular weight of **U** is _____.

Ans. (102018)

Sol.

OH COOH + HOOC OH OHOON (PHBV)
$$(C_9H_{14}O_4)_n$$

Mol. wt. of polymer = $(104 \times 500) + (118 \times 500) - 18 \times 499$

=52000+59000-8982

= 102018 g

OFFICE ADDRESS: PLOT NUMBER 35, GOPALPURA BYPASS ROAD, NEAR RIDDHI SIDDHI CIRCLE, 10-B SCHEME, TRIVENI NAGAR, GOPAL PURA MODE, JAIPUR, RAJASTHAN 302020

Mob. 8888000021, 7410900901, 7410900906, 7410900907, 7410900908

www.competishun.com

PARAGRAPH II Question 16 to 17

When potassium iodide is added to an aqueous solution of potassium ferricyanide, a reversible reaction is observed in which a complex $\bf P$ is formed. In a strong acidic medium, the equilibrium shifts completely towards $\bf P$. Addition of zinc chloride to $\bf P$ in a slightly acidic medium results in a sparingly soluble complex $\bf Q$.

- **16.** The number of moles of potassium iodide required to produce two moles of **P** is _____.
- Ans. (2)
- **Sol.** From this equation we need 2 mol of KI

$$2KI + 2K_3[Fe(CN)_6] \rightarrow I_2 + 2K_4[Fe(CN)_6]$$

$$2K_4[Fe(CN)_6] + 3ZnCl_2 \rightarrow K_2Zn_3[Fe(CN)_6]_2 + 6KCl$$

- 17. The number of zinc ions present in the molecular formula of **Q** is _____
- Ans. (3)
- **Sol.** From this equation we need 2 mol of KI

$$2KI + 2K_3[Fe(CN)_6] \rightarrow I_2 + 2K_4[Fe(CN)_6]$$

$$2K_4[Fe(CN)_6] + 3ZnCl_2 \rightarrow K_2Zn_3[Fe(CN)_6]_2 + 6KCl$$

