Let $\vec{a}=9 \hat{\imath}-13 \hat{\jmath}+25 k, b=3 \hat{\imath}+7 \hat{\jmath}-13 k$ and $\overrightarrow{\mathrm{c}}=17 \hat{\imath}-2 \hat{\jmath}+\mathrm{k}$ be three given vectros. If $\overrightarrow{\mathrm{r}}$ is a vector such that $\vec{r} \times \vec{a}=(\vec{b}+\vec{c}) \times \vec{a}$ and $\vec{r} \cdot(\vec{b}-\vec{c})=0$, then $\frac{|593 \vec{r}+67 \vec{a}|^2}{(593)^2}$ is equal to