Get chapter-wise JEE Main & Advanced questions with solutions
QJEE MAIN 2025
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying $f(0) = 1$ and $f(2x) - f(x) = x$ for all $x \in \mathbb{R}$. If...
JEE MainMathematicsHard
View Solution →
QJEE MAIN 2025
Let $[\mathrm{x}]$ denote the greatest integer function, and let m and n respectively be the numbers of the points, where the function $f(x)-[x]+|x-2|,-2
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2025
Let $f:R \to R$ be a twice differentiable function such that $...
JEE MainMathematicsHard
View Solution →
QJEE MAIN 2025
Let $...
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2025
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $...
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2025
If the function $...
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2025
Let $f(x)$ be a real differentiable function such that $f(0)=1$ and
$f(x+y)=f(x){{f}^{\prime }}(y)+{{f}^{\prime }}(x)f(y)$ for all $x,y\in \mathbf{R}$. Then $\sum\limits_{{\text{n}=1}}^{{100}}{{{{{\log }}_{\text{e}}}}}f(\text{n})$ is equal to
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2025
Let the function, $f(x)= \begin{cases}-3 a^2-2, & x<1 \\ a^2+b x, & x \geqslant 1\end{cases}$ be differentiable for all $x \in \mathbf{R}$, where $...
Hello 👋 Welcome to Competishun – India’s most trusted platform for JEE & NEET preparation. Need help with JEE / NEET courses, fees, batches, test series or free study material? Chat with us now 👇