Get chapter-wise JEE Main & Advanced questions with solutions
QJEE MAIN 2021
Let f be any function defined on R and let it satisfy the condition : $$ |f(x)-f(y)| \leq\left|(x-y)^2\right|, \forall(x, y) \in R $$ If $f(0)=1$,...
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2021
Let $f: R \rightarrow R$ be defined as $$ f(x)=\left\{\begin{array}{cc} 2 \sin \left(-\frac{\pi x}{2}\right), & \text { if } x<-1 \\ \left|a x^2+x+b\right|, & \text...
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2021
If $f: \mathrm{R} \rightarrow \mathrm{R}$ is a function defined by $f(\mathrm{x})=[\mathrm{x}-1] \cos \left(\frac{2 \mathrm{x}-1}{2}\right) \pi$, where $[$.$] denotes the greatest integer function, then f$ is...
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2021
The number of points, at which of function $f(x)=|2 x+1|-3|x+2|+\left|x^2+x-2\right|, x \in R$ is not differentiable, is
$\_\_\_\_$
JEE MainMathematicsEasy
View Solution →
QJEE MAIN_2022
If $f(x)=\left\{\begin{array}{cc}x+a, & x \leq 0 \\ |x-4|, & x>0\end{array}\right.$ and $g(x)=\left\{\begin{array}{cc}x+1, & x<0 \\ (x-4)^2+b, & x \geq 0\end{array}\right.$ are continuous on $R$, then...
JEE MainMathematicsMedium
View Solution →
QJEE MAIN_2022
If the function $f(x)=\left\{\frac{\log e\left(1-x+x^2\right)+\log e\left(1+x+x^2\right)}{\sec x-\cos x}, x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)-\{0\}\right.$ is continuous at $x=0$, then $k$ is equal to: ${ }_{x=0}^k$ :
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2022
Let $...
JEE MainMathematicsHard
View Solution →
QJEE MAIN 2022
Let $f: R \rightarrow R$ be a continuous function such that $f(3 x)-f(x)=x$. If $f(8)=7$, then $f(14)$ is equal to:
JEE MainPhysicsHard
View Solution →
QJEE MAIN 2022
Given $\pi a^2-\pi a b=30 \pi$ and $\pi a b-\pi b^2=18 \pi$ on subtracting, we get $(a-b)^2=a^2-2 a b+b^2=12$ Let $f$ and $g$ be twice...
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2022
Let $f, g: R \rightarrow R$ be functions defined by $f(x)=\left\{\begin{array}{cc}{[x],} & x<0 \\ |1-x|, & x \geq 0\end{array}\right.$ and $...
Hello 👋 Welcome to Competishun – India’s most trusted platform for JEE & NEET preparation. Need help with JEE / NEET courses, fees, batches, test series or free study material? Chat with us now 👇