Get chapter-wise JEE Main & Advanced questions with solutions
QJEE MAIN 2021
The number of real roots of the equation $\tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^2+x+1}=\frac{\pi}{4}$ is :
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2021
$\operatorname{cosec}\left[2 \cot ^{-1}(5)+\cos ^{-1}\left(\frac{4}{5}\right)\right]$ is equal to :
JEE MainMathematicsEasy
View Solution →
QJEE-MAIN 2021
The number of solutions of the equation $$ \sin ^{-1}\left[x^2+\frac{1}{3}\right]+\cos ^{-1}\left[x^2-\frac{2}{3}\right]=x^2 $$ for $x \in[-1,1]$ and $[x]$ denotes the greatest integer less than or equal...
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2021
Given that the inverse trigonometric functions take principal values only. Then, the number of real values of $x$ which satisfy $$ \sin ^{-1}\left(\frac{3 x}{5}\right)+\sin ^{-1}\left(\frac{4...
JEE MainMathematicsMedium
View Solution →
Q JEE MAIN 2021
The value of $\left(2 \tan ^{-1}\left(\frac{3}{5}\right)+\sin ^{-1}\left(\frac{5}{13}\right)\right)$ is equal to:
JEE MainMathematicsMedium
View Solution →
Q JEE MAIN 2021
A possible value of $\tan \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)$ is :
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2021
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2022
The value of $\cot \left(\sum_{n=1}^{50} \tan ^{-1}\left(\frac{1}{1+n+n^2}\right)\right)$ is :
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2022
The value of $\lim _{n \rightarrow \infty} 6 \tan \left\{\sum_{r=1}^n \tan ^{-1}\left(\frac{1}{r^2+3 r+3}\right)\right\}$
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2022
If the inverse trigonometric functions take principal values, then $\cos ^{-1}\left(\frac{3}{10} \cos \left(\tan ^{-1}\left(\frac{4}{3}\right)\right)+\frac{2}{5} \sin \left(\tan ^{-1}\left(\frac{4}{3}\right)\right)\right)$ is equal to :
Hello 👋 Welcome to Competishun – India’s most trusted platform for JEE & NEET preparation. Need help with JEE / NEET courses, fees, batches, test series or free study material? Chat with us now 👇