Report Issue

Inverse Trigonometric Functions

Get chapter-wise JEE Main & Advanced questions with solutions

Q JEE MAIN 2022
If the inverse trigonometric functions take principal values, then $\cos ^{-1}\left(\frac{3}{10} \cos \left(\tan ^{-1}\left(\frac{4}{3}\right)\right)+\frac{2}{5} \sin \left(\tan ^{-1}\left(\frac{4}{3}\right)\right)\right)$ is equal to :
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2022
If $y=\tan ^{-1}\left(\sec x^3-\tan x^3\right)$. $\frac{\pi}{2}$< $x^3$< $\frac{3 \pi}{2}$, then
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2022
The value of $\tan ^{-1}\left(\frac{\cos \left(\frac{15 \pi}{4}\right)-1}{\sin \left(\frac{\pi}{4}\right)}\right)$ is equal to :
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2022
Let $x * y=x^2+y^3$ and $(x * 1) * 1=x *(1 * 1)$. Then a value of $2 \sin ^{-1}\left(\frac{x^4+x^2-2}{x^4+x^2+2}\right)$
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2022
$\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)+\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)+\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$ is equal to :
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2022
The set of all values of $k$ for which $\left(\tan ^{-1} x\right)^3+\left(\cot ^{-1} x\right)^3=k \pi^3, x \in R$, is the interval :
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2023
For $\mathrm{x} \in(-1,1]$, the number of solutions of the equation $\sin ^{-1} \mathrm{x}=2 \tan ^{-1} \mathrm{x}$ is equal to
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2025
The Value of $\cot ^{-1}\left(\frac{\sqrt{1+\tan ^2(2)}-1}{\tan (2)}\right)-\cot ^{-1}\left(\frac{\sqrt{1+\tan ^2\left(\frac{1}{2}\right)}+1}{\tan \left(\frac{1}{2}\right)}\right)$ is equal to
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2025
If $y=\cos \left(\frac{\pi}{3}+\cos ^{-1} \frac{x}{2}\right)$, then $(x-y)^2+3 y^2$ is equal to
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2025
The sum of the infinite series $\cot ^{-1}\left(\frac{7}{4}\right)+\cot ^{-1}\left(\frac{19}{4}\right)+\cot ^{-1}\left(\frac{39}{4}\right)+\cot ^{-1}\left(\frac{67}{4}\right)+\ldots$. is :
JEE Main Mathematics Hard
View Solution →