Report Issue

2024 JEE PYQ

Get chapter-wise JEE Main & Advanced questions with solutions

Q JEE MAIN 2024
Let $f$ be a differentiable function in the interval $(0, \infty)$ such that $f(1)=1$ and $\lim _{t \rightarrow x} \frac{t^2 f(x)-x^2 f(t)}{t-x}=1$ for each $x>0$....
JEE Main Mathematics Medium
View Solution →
Q JEE-Main 2024
Let $\mathrm{f}:(-\infty, \infty)-\{0\} \rightarrow \mathrm{R}$ be a differentiable function such that $f^{\prime}(1)=\lim _{a \rightarrow \infty} a^2 f\left(\frac{1}{a}\right)$. Then $...
JEE Main Mathematics Hard
View Solution →
Q JEE MAIN
If the domain of the function $f(x)=\sin ^{-1}\left(\frac{x-1}{2 x+3}\right)$ is $R-(\alpha, \beta)$ then $12 \alpha \beta$ is equal to :
JEE Main Mathematics Easy
View Solution →
Q JEE MAINS 2024
A small square loop of wire of side $\ell$ is placed inside a large square loop of wire of side $L\left(L=\ell^2\right)$. The loops are coplanar...
JEE Main Physics Medium
View Solution →
Q JEE MAIN 2024
Let $A$ be a $3 \times 3$ matrix of non-negative real elements such that $A\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=3\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Then the...
JEE Main Mathematics Hard
View Solution →
Q JEE MAIN 2024
For the function $f(x)=(\cos x)-x+1, x \in \mathbb{R}$, between the following two statements (S1) $f(x)=0$ for only one value of $x$ is $[0, \pi]$. (S2)...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2024
If $S=\{a \in R:|2 a-1|=3[a]+2\{a\}\}$, where $[t]$ denotes the greatest integer less than or equal to $t$ and $\{t\}$ represents the fractional part of $t$,...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2024
Let a $$ \begin{aligned} t a=1+\frac{{ }^2 C_2}{3!}+\frac{{ }^3 C_2}{4!}+\frac{{ }^4 C_2}{5!}+\cdots, & \\ & \quad b=1+\frac{{ }^1 C_0+{ }^1 C_1}{1!}+\frac{{ }^2 C_0+{ }^2 C_1+{...
JEE Main Mathematics Hard
View Solution →
Q JEE MAINS 2024
Two waves of intensity ratio $1: 9$ cross each other at a point. The resultant intensities at the point, when (a) Waves are incoherent is...
JEE Main Physics Medium
View Solution →
Q JEE MAIN 2024
Let $\alpha=\sum_{\mathrm{r}=0}^{\mathrm{n}}\left(4 \mathrm{r}^2+2 \mathrm{r}+1\right)^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ and $\beta=\left(\sum_{r=0}^n \frac{{ }^n C_r}{r+1}\right)+\frac{1}{n+1}$. If $140<\frac{2 \alpha}{\beta}<281$, then the value of $n$ is
JEE Main Mathematics Hard
View Solution →