Get chapter-wise JEE Main & Advanced questions with solutions
QJEE MAIN_2025
For $\mathrm{t}>-1$, let $\alpha_{\mathrm{t}}$ and $\beta$, be the roots of the equation $$ \left((t+2)^{1 / 7}-1\right) x^2+\left((t+2)^{1 / 0}-1\right) x+\left((t+2)^{2 / 2}-1\right)=0 \text {. If...
JEE MainPhysicsHard
View Solution →
QJEE MAIN 2023
$\operatorname{Lim}_{n \rightarrow \infty}\left\{\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)\left(2^{\frac{1}{2}}-2^{\frac{1}{5}}\right) \cdots \cdots\left(2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}\right)\right\}$ is equal to
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2025
If $\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}=p$, then $96 \log _e p$ is equal to $\_\_\_\_$
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2025
The sum $1+\frac{1+3}{2!}+\frac{1+3+5}{3!}+\frac{1+3+5+7}{4!}+\ldots$ upto $\infty$ terms, is equal to
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2025
Let $f$ be a differentiable function on $\mathbf{R}$ such that $f(2)=1, f^{\prime}(2)=4$. Let $\lim _{x \rightarrow 0}(f(2+x))^{3 / x}=\mathbf{e}^\alpha$. Then the number of times the...
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2025
If $\lim _{x \rightarrow 0} \frac{\cos (2 x)+a \cos (4 x)-b}{x^4}$ is finite, then $(a+b)$ is equal to :
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2023
$\lim _{x \rightarrow 0}\left(\left(\frac{1-\cos ^2(3 x)}{\cos ^3(4 x)}\right)\left(\frac{\sin ^3(4 x)}{\left(\log _e(2 x+1)\right)^5}\right)\right)$ is equal to $\_\_\_\_$
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2024
The value of $\lim _{x \rightarrow 0} 2\left(\frac{1-\cos x \sqrt{\cos 2 x} \sqrt[3]{\cos 3 x} \ldots \ldots 10}{x^2}\right)$ is
JEE MainMathematicsMedium
View Solution →
QJEE MAIN
Let a circle passing through (2,0) have its centre at the point (h,k). Let $\left(x_c, y_c\right)$ be the point of intersection of the lines 3x+5y=1...
JEE MainMathematicsMedium
View Solution →
QJEE-Main 2024
Let $\mathrm{f}:(-\infty, \infty)-\{0\} \rightarrow \mathrm{R}$ be a differentiable function such that $f^{\prime}(1)=\lim _{a \rightarrow \infty} a^2 f\left(\frac{1}{a}\right)$. Then $...
Hello 👋 Welcome to Competishun – India’s most trusted platform for JEE & NEET preparation. Need help with JEE / NEET courses, fees, batches, test series or free study material? Chat with us now 👇