Get chapter-wise JEE Main & Advanced questions with solutions
QJEE MAIN 2024
Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a function given by $$ f(x)=\left\{\begin{array}{cl} \frac{1-\cos 2 x}{x^2} & , x<0 \\ \alpha & , x=0, \text {...
JEE MainMathematicsEasy
View Solution →
QJEE-Main 2024
Let $\{x\}$ denote the fractional part of $x$ and $f(x)=\frac{\cos ^{-1}\left(1-\{x\}^2\right) \sin ^{-1}(1-\{x\})}{\{x\}-\{x\}^3}, x \neq 0$. If $L$ and R respectively denotes the left hand...
If $a=\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^4}}-\sqrt{2}}{x^4}$ and $b=\lim _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{1+\cos x}}$, then the value of $a b^3$ is :
JEE MainMathematicsHard
View Solution →
QJEE MAIN 2025
If $\lim _{\mathrm{t} \rightarrow 0}\left(\int_{0}^{1}(3 x+5)^{\mathrm{t}} \mathrm{d} x\right)^{\frac{1}{\mathrm{t}}}=\frac{\alpha}{5 \mathrm{e}}\left(\frac{8}{5}\right)^{\frac{2}{3}}$, then $\alpha$ is equal to $\_\_\_\_$ .
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2025
Let $f(x)=\lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{r}=0}^{\mathrm{n}}\left(\frac{\tan \left(x / 2^{r+1}\right)+\tan ^{3}\left(x / 2^{r+1}\right)}{1-\tan ^{2}\left(x / 2^{r+1}\right)}\right)$. Then $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-\mathrm{e}^{f(x)}}{(x-f(x))}$ is equal to
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2025
$...
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2025
If $...
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2025
For $\alpha ,\beta ,\gamma \in R$ , if $...
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2025
$\lim _{x \rightarrow \infty} \frac{\left(2 x^{2}-3 x+5\right)(3 x-1)^{\frac{x}{2}}}{\left(3 x^{2}+5 x+4\right) \sqrt{(3 x+2)^{x}}}$ is equal to :
Hello 👋 Welcome to Competishun – India’s most trusted platform for JEE & NEET preparation. Need help with JEE / NEET courses, fees, batches, test series or free study material? Chat with us now 👇