Report Issue

Mathematical Reasoning

Get chapter-wise JEE Main & Advanced questions with solutions

Q JEE MAIN 2020
The logical statement $(p \Rightarrow q) \wedge(q \Rightarrow \sim p)$ is equivalent to
JEE Main Mathematics Easy
View Solution →
Q JEE Main 2021
Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2021
Let *, □ $\in\{\wedge, \vee\}$ be such that the Boolean expression $\left(\mathrm{p}^* \sim q\right) \Rightarrow(\mathrm{p}$ □ q) is a tautology. Then:
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2021
The statement $(p \wedge(p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow r$ is :
JEE Main Mathematics Easy
View Solution →
Q JEE Main 2021
If the truth value of the Boolean expression $((p \vee q) \wedge(q \rightarrow r) \wedge(\sim r)) \rightarrow(p \wedge q)$ is false, then the truth values...
JEE Main Mathematics Easy
View Solution →
Q JEE Main 2019
If the Boolean expression $(p \oplus q) \wedge(\sim p \odot q)$ is equivalent to $\mathbf{p} \wedge \mathbf{q}$, where $\oplus, \odot \in\{\wedge, \mathrm{v}\}$, then the ordered...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2019
The contrapositive of the statement “If you are born in India, then you are a citizen of India”, is:
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2021
Consider the two statements : $(\mathrm{S} 1):(\mathrm{p} \rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \rightarrow \mathrm{p})$ is a tautology. $(S 2):(p \wedge \sim q) \wedge(\sim p \cup \dot{q})$...
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2021
Which of the following is equivalent to the Boolean expression $\mathrm{p} \wedge \sim \mathrm{q}$ ?
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN_2021_
The Boolean expression $(P \Rightarrow q) \wedge(q \Rightarrow \sim p)$ is equivalent to:
JEE Main Mathematics Medium
View Solution →