Report Issue

Matrices

Get chapter-wise JEE Main & Advanced questions with solutions

Q JEE MAIN 2025
Let $A = \left[ {\begin{array}{*{20}{c}} {\cos \theta }&0&{ - \sin \theta }\\ 0&1&0\\ {\sin \theta }&0&{\cos \theta } \end{array}} \right]$. If for some $...
JEE Main Physics Hard
View Solution →
Q JEE MAIN 2025
Let A be a matrix of order $3 \times 3$ and $|A| = 5$. If $...
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2025
For some a, b, let $$ f(x)=\left|\begin{array}{ccc} a+\frac{\sin x}{x} & 1 & \mathbf{b} \\ \mathbf{a} & 1+\frac{\sin x}{x} & \mathbf{b} \\ \mathbf{a} & 1 &...
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2025
If the system of equations $x+2 y-3 z=2$ $2 x+\lambda y+5 z=5$ $14 x+3 y+\mu z=33$ has infinitely many solutions, then $\lambda+\mu$ is equal to:
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2025
Let $a \in R$ and A be a matrix of order $3 \times 3$ such that $\det (A) = - 4$ and $...
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2025
Let $A = \left[ {\begin{array}{*{20}{c}} \alpha &{ - 1}\\ 6&\beta \end{array}} \right],\alpha > 0$, such that $\det (A) = 0$ and $...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2025
The system of equations $x+y+z=6$, $x+2 y+5 z=9$, $x+5 y+\lambda z=\mu$, has no solution if
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2025
Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be a $3 \times 3$ matrix such that $\mathrm{A}\left[\begin{array}{l}0 1 0\end{array}\right]=\left[\begin{array}{l}0 0 1\end{array}\right], \mathrm{A}\left[\begin{array}{l}4 1 3\end{array}\right]=\left[\begin{array}{l}0 1 0\end{array}\right]$ and $...
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2025
Let $S=\left\{m \in \mathbf{Z}: A^{m^2}+A^m=3 I-A^{-6}\right\}$, where $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 0\end{array}\right]$. Then $n(S)$ is equal to ______.
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2025
Let M and N respectively be the maximum and the minimum values of $...
JEE Main Mathematics Easy
View Solution →