Report Issue

Sequences and Series

Get chapter-wise JEE Main & Advanced questions with solutions

Q JEE MAIN 2022
If n arithmetic means are inserted between a and 100 such that the ratio of the first mean to the last mean is 1 :...
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2022
If $a_1, a_2, a_3 \ldots$. and $b_1, b_2, b_3 \ldots$. are A.P. and $a_1,=2, a_{10}=3, a_1 b_1=1=a_{10} b_{10}$ then $a_4 b_4$ is equal to
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2022
Let $S=2+\frac{6}{7}+\frac{12}{7^2}+\frac{20}{7^3}+\frac{30}{7^4}+\ldots$. then $4 S$ is equal to
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2022
If $A=\sum_{n=1}^{\infty} \frac{1}{\left(3+(-1)^n\right)^n}$ and $B \sum_{n=1}^{\infty} \frac{(-1)^n}{\left(3+(-1)^n\right)^n}$, then $\frac{A}{B}$ is equal to :
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2022
Let $x, y>0$. If $x^3 y^2=2^{15}$, then the least value of $3 x+2 y$ is
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2022
Let $\left\{a_n\right\}_{n-0}^{\infty}$ be a sequence such that $a_0=a_1=0$ and $a_{n+2}=2 a_{n+1}-a_n+1$ for all $n \geq 0$. Then, $\sum_{n-2}^{\infty} \frac{a_n}{7^n}$ is equal to-
JEE Main Mathematics Hard
View Solution →
Q JEE MAIN 2022
The sum $1+2 \cdot 3+3 \cdot 3^2+\ldots \ldots+10 \cdot 3^9$ is equal to
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2022
Let $\mathrm{A}=\left\{1, \mathrm{a}_1, \mathrm{a}_2 \ldots . . \mathrm{a}_{18}, 77\right\}$ be a set of integers with $1<\mathrm{a}_1<\mathrm{a}_2<\ldots<\mathrm{a}_{18}<77$. Let the set $\mathrm{A}+\mathrm{A}=\{\mathrm{x}+\mathrm{y}: \mathrm{x}$, $y \in A\}$ contain...
JEE Main Mathematics Hard
View Solution →
Q JEE MAIN 2022
If the sum of the first ten terms of the series $\frac{1}{5}+\frac{2}{65}+\frac{3}{325}+\frac{4}{1025}+\frac{5}{2501}+\ldots .$. is $\frac{m}{n}$, where $m$ and $n$ are co prime numbers, then $m+n$...
JEE Main Mathematics Hard
View Solution →
Q JEE MAIN 2022
Let $\mathrm{A}=\sum_{i=1}^{10} \sum_{j=1}^{10} \min \{\mathrm{i}, \mathrm{j}\}$ and $\mathrm{B}=\sum_{i=1}^{10} \sum_{j=1}^{10} \max \{\mathrm{i}, \beta\}$. Then $\mathrm{A}+\mathrm{B}$ is equal to $\_\_\_\_$ .
JEE Main Mathematics Medium
View Solution →