Report Issue

Vector & 3D

Get chapter-wise JEE Main & Advanced questions with solutions

Q JEE MAIN 2022
The acute angle between the planes $\mathrm{P}_1$ and $\mathrm{P}_2$, when $\mathrm{P}_1$ and $\mathrm{P}_2$ are the planes passing through the intersection of the planes $...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2022
If two distinct point $Q, R$ lie on the line of intersection of the planes $-x+2 y-z=0$ and $3 x-5 y+2 z=0$ and $...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2022
Let $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$. Then the number of vectors $\overrightarrow{\mathrm{b}}$ such that $\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}}$ and $|\overrightarrow{\mathrm{b}}| \in\{1,2, \ldots \ldots, 10\}$ is
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2022
If two straight lines whose direction cosines are given by the relations $I+m-n=0,3 I^2+m^2+c n l=0$ are parallel, then the positive value of $c$ is:
JEE Main Mathematics Hard
View Solution →
Q JEE MAIN 2022
Let $\vec{a}=\alpha \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}-\beta \hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}-2 \hat{k}$ where $\alpha, \beta \in R$, be three vectors. If the projection of $\vec{a}$...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2022
If the mirror image of the point (2, 4, 7) in the plane 3x – y + 4z = 2 is (a, b, c), the...
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2022
If $\vec{a} \cdot \vec{b}=1, \vec{b} \cdot \vec{c}=2$ and $\vec{c} \cdot \vec{a}=3$, then the value of $...
JEE Main Mathematics Medium
View Solution →
Not a question post
Q JEE MAIN_2022
Let the plane $2 x+3 y+z+20=0$ be rotated through a right angle about its line of intersection with the plane $x-3 y+5 z=8$. If the...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2022
If the two lines $\ell_1: \frac{x-2}{3}=\frac{y+1}{-2}, z=2$ and $\ell_2: \frac{x-1}{1}=\frac{2 y+3}{\alpha}=\frac{z+5}{2}$ perpendicular, then an angle between the lines $l_2$ and $\ell_3: \frac{1-\mathrm{x}}{3}=\frac{2 \mathrm{y}-1}{-4}=\frac{\mathrm{z}}{4}$ is:
JEE Main Mathematics Medium
View Solution →