Report Issue

Inverse Trigonometric Functions

Get chapter-wise JEE Main & Advanced questions with solutions

Q JEE MAIN 2026
If $k=\tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1}\left(\frac{2}{3}\right)\right)+\tan \left(\frac{1}{2} \sin ^{-1}\left(\frac{2}{3}\right)\right)$, then the number of solutions of the equation $\sin ^{-1}(k x-1)=\sin ^{-1} x-\cos ^{-1} x$ is $\_\_\_\_$
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2026
Considering the principal values of inverse trigonometric functions, the value of the expression $\tan \left(2 \sin ^{-1}\left(\frac{2}{\sqrt{13}}\right)-2 \cos ^{-1}\left(\frac{3}{\sqrt{10}}\right)\right)$ is equal to:
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN_2026_
The number of solutions of $\tan ^{-1} 4 x+\tan ^{-1} 6 x=\frac{\pi}{6}$, where $-\frac{1}{2 \sqrt{6}}
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2026
Let the maximum value of $\left(\sin ^{-1} x\right)^2+\left(\cos ^{-1} x\right)^2$ for $x \in\left[-\frac{\sqrt{3}}{2}, \frac{1}{\sqrt{2}}\right]$ be $\frac{m}{n} \pi^2$, where $\operatorname{gcd}(m, n)=1$. Then $\mathrm{m}+\mathrm{n}$ is equal to...
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2026
If the domain of the function $f(x)=\cos ^{-1}\left(\frac{2 x-5}{11-3 x}\right)+\sin ^{-1}\left(2 x^2-3 x+1\right)$ is the interval $[\alpha, \beta]$, then $\alpha+2 \beta$ is equal to :
JEE Main Mathematics Easy
View Solution →
Q JEE Advanced 2025
The total number of real solutions of the equation
$ \theta=\tan ^{-1}(2 \tan \theta)-\frac{1}{2} \sin ^{-1}\left(\frac{6 \tan \theta}{9+\tan ^2 \theta}\right)
$ is
...
JEE Advance Mathematics Easy
View Solution →
Q JEE MAIN 2020
If $y=\sum_{k=1}^6 k \cos ^{-1}\left\{\frac{3}{5} \cos k x-\frac{4}{5} \sin k x\right\}$, then $\frac{d y}{d x}$ at $x=0$ is
JEE Main Mathematics Easy
View Solution →
Q JEE-MAIN 2019
Considering only the principal values of inverse functions, the set
$A=\left\{x \geq 0 ; \tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\frac{\pi}{4}\right\}$
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2019
If $x=\sin ^{-1}(\sin 10)$ and $y=\cos ^{-1}(\cos 10)$, then $y-x$ is equal to
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2020
If S is the sum of the first 10 terms of the series
$\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{13}\right)+\tan ^{-1}\left(\frac{1}{21}\right)+\ldots \ldots$
then tan(S) is equal to :
JEE Main Mathematics Medium
View Solution →