Get chapter-wise JEE Main & Advanced questions with solutions
QJEE MAIN 2024
The value of $\lim _{x \rightarrow 0} 2\left(\frac{1-\cos x \sqrt{\cos 2 x} \sqrt[3]{\cos 3 x} \ldots \ldots 10}{x^2}\right)$ is
JEE MainMathematicsMedium
View Solution →
QJEE MAIN
Let a circle passing through (2,0) have its centre at the point (h,k). Let $\left(x_c, y_c\right)$ be the point of intersection of the lines 3x+5y=1...
JEE MainMathematicsMedium
View Solution →
QJEE-Main 2024
Let $\mathrm{f}:(-\infty, \infty)-\{0\} \rightarrow \mathrm{R}$ be a differentiable function such that $f^{\prime}(1)=\lim _{a \rightarrow \infty} a^2 f\left(\frac{1}{a}\right)$. Then $...
JEE MainMathematicsHard
View Solution →
QJEE MAIN 2024
If $\lim _{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}=\frac{m \sqrt{5}}{n(2 n)^{2 / 3}}$, where $\operatorname{gcd}(m, n)=1$, then $...
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2024
Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a function given by $$ f(x)=\left\{\begin{array}{cl} \frac{1-\cos 2 x}{x^2} & , x<0 \\ \alpha & , x=0, \text {...
JEE MainMathematicsEasy
View Solution →
QJEE-Main 2024
Let $\{x\}$ denote the fractional part of $x$ and $f(x)=\frac{\cos ^{-1}\left(1-\{x\}^2\right) \sin ^{-1}(1-\{x\})}{\{x\}-\{x\}^3}, x \neq 0$. If $L$ and R respectively denotes the left hand...
If $a=\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^4}}-\sqrt{2}}{x^4}$ and $b=\lim _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{1+\cos x}}$, then the value of $a b^3$ is :
JEE MainMathematicsHard
View Solution →
QJEE MAIN 2025
If $\lim _{\mathrm{t} \rightarrow 0}\left(\int_{0}^{1}(3 x+5)^{\mathrm{t}} \mathrm{d} x\right)^{\frac{1}{\mathrm{t}}}=\frac{\alpha}{5 \mathrm{e}}\left(\frac{8}{5}\right)^{\frac{2}{3}}$, then $\alpha$ is equal to $\_\_\_\_$ .
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2025
Let $f(x)=\lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{r}=0}^{\mathrm{n}}\left(\frac{\tan \left(x / 2^{r+1}\right)+\tan ^{3}\left(x / 2^{r+1}\right)}{1-\tan ^{2}\left(x / 2^{r+1}\right)}\right)$. Then $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-\mathrm{e}^{f(x)}}{(x-f(x))}$ is equal to
Hello 👋 Welcome to Competishun – India’s most trusted platform for JEE & NEET preparation. Need help with JEE / NEET courses, fees, batches, test series or free study material? Chat with us now 👇