Report Issue

Continuity and Differentiability

Get chapter-wise JEE Main & Advanced questions with solutions

Q JEE MAIN 2026
Let $f(x)=\lim _{\boldsymbol{\theta} \rightarrow 0}\left(\frac{\cos \pi x-x^{\left(\frac{2}{\boldsymbol{\theta}}\right)} \sin (x-1)}{1+x^{\left(\frac{2}{\boldsymbol{\theta}}\right)}(x-1)}\right), x \in \mathbf{R}$. Consider the following two statements :
(I) $f(x)$ is discontinous at $x=1$.
(II)...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2026
If $f(x)=\left\{\begin{array}{cc}\frac{a|x|+x^2-2(\sin |x|)(\cos |x|)}{x} & , x \neq 0 \\ b & , x=0\end{array}\right.$
is continuous at $x=0$, then $a+b$ is equal to
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2026
Let $\alpha, \beta \in \mathbb{R}$ be such that the function $f(x)=\left\{\begin{array}{ll}2 \alpha\left(x^2-2\right)+2 \beta x & , x<1 \\ (\alpha+3) x+(\alpha-\beta) & , x \geq 1\end{array}\right.$...
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2026
If the function $f(x)=\frac{e^x\left(e^{\tan x-x}-1\right)+\log _e(\sec x+\tan x)-x}{\tan x-x}$ is continuous at $x=0$, then the value of $f(0)$ is equal to
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2026
Let $[\bullet]$ denote the greatest integer function, and let $f(x)=\min \left\{\sqrt{2} x, x^2\right\}$. Let $\mathrm{S}=\left\{x \in(-2,2)\right.$ : the function $\mathrm{g}(x)=|x|\left[x^2\right]$ is discontinuous at $\left.x\right\}$. Then...
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN_2026_
Let $f(x)=\left\{\begin{array}{ll}\frac{\mathrm{a} x^2+2 \mathrm{ax}+3}{4 x^2+4 x-3} & , x \neq-\frac{3}{2}, \frac{1}{2} \\ \mathrm{~b} & , x=-\frac{3}{2}, \frac{1}{2}\end{array}\right.$ be continuous at $x=-\frac{3}{2}$. If $f \circ f(x)=\frac{7}{5}$,...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2026
Let $f$ and $g$ be functions satisfying $f(x+y)=f(x) f(y), f(1)=7$ and $g(x+y)=g(x y), g(1)=1$, for all $x, y \in \mathbf{N}$. If $\sum_{x=1}^{\mathrm{n}}\left(\frac{f(x)}{g(x)}\right)=19607$, then n is...
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2026
Let $f: \mathbf{R} \rightarrow(0, \infty)$ be a twice differentiable function such that $f(3)=18, f^{\prime}(3)=0$ and $f^{\prime \prime}(3)=4$. Then $\lim _{x \rightarrow 1}\left(\log _e\left(\frac{f(2+x)}{f(3)}\right)^{\frac{18}{(x-1)^2}}\right)$ is equal...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN_2019_
Let $f \sim R \rightarrow R$ be differentiable at $c \in R$ and $f(c)=$ 0. If $g(x)=|f(x)|$, then at $x=c, g$ is;
JEE Main Mathematics Medium
View Solution →
Q _ JEE MAIN_2019_
$$ \text { If } f(x)=\left\{\begin{array}{cc} \frac{\sin (p+1) x+\sin x}{x} & , x<0 \\ q & , x=0 \\ \frac{\sqrt{x+x^2}-\sqrt{x}}{x^{3 / 2}} & , x>0...
JEE Main Mathematics Medium
View Solution →